Cho ba hộp A, B, C. Hộp A có chứa ba thẻ mang số 1, số 2, số 3. Hộp B chứa hai thẻ mang số 2 và số 3. Hộp C chứa hai thẻ mang số 1 và số 2. Từ mỗi hộp ta rút ra ngẫu nhiên một thẻ.
a) Vẽ sơ đồ hình cây để mô tả các phần tử của không gian mẫu.
b) Gọi M là biến cố: “Trong ba thẻ rút ra có ít nhất một thẻ số 1”. Biến cố \(\overline M \) là tập con nào của không gian mẫu?
c) Tính P(M) và P(\(\overline M \)).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải:
a) Theo bài ra, ta vẽ được sơ đồ hình cây mô tả các phần tử của không gian mẫu như sau:
Ta có: Ω = {121; 122; 131; 132; 221; 222; 231; 232; 321; 322; 331; 332}.
Vậy n(Ω) = 12.
b) Biến cố M: “Trong ba thẻ rút ra có ít nhất một thẻ số 1”.
Do đó, biến cố \(\overline M \): "Trong ba thẻ rút ra không có thẻ số 1".
Khi đó: \(\overline M \) = {222; 232; 322; 332}.
c) Ta có: \(n\left( {\overline M } \right)\) = 4.
Do đó, \(P\left( {\overline M } \right) = \frac{{n\left( {\overline M } \right)}}{{n\left( \Omega \right)}} = \frac{4} = \frac{1}{3}\).
Vì \(\overline M \) là biến cố đối của biến cố M nên \(P\left( {\overline M } \right) = 1 - P\left( M \right)\).
Hay \(P\left( M \right) = 1 - P\left( {\overline M } \right) = 1 - \frac{1}{3} = \frac{2}{3}.\)
Vậy \(P\left( M \right) = \frac{2}{3}\) và \(P\left( {\overline M } \right) = \frac{1}{3}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |