Một hộp đựng các tấm thẻ đánh số 10; 11; ....; 20. Rút ngẫu nhiên từ hộp hai tấm thẻ. Tính xác suất của các biến cố sau:
a) C: “Cả hai thẻ rút được đều mang số lẻ”;
b) D: “Cả hai thẻ rút được đều mang số chẵn”.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Phép thử là chọn ngẫu nhiên 2 tấm thẻ từ hộp.
Các tấm thẻ đánh số 10; 11; ....; 20, nghĩa là có 20 – 10 + 1 = 11 (tấm thẻ).
Không gian mẫu là tập tất cả các tập con gồm 2 tấm thẻ trong 11 tấm thẻ.
Do đó, n(Ω) = \(C_{11}^2 = 55\).
a) Cả hai thẻ được rút ra đều mang số lẻ, nên 2 thẻ rút ra thuộc tập {11; 13; 15; 17; 19}.
Do đó n(C) = \(C_5^2 = 10\).
Vậy \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac = \frac{2}\).
b) Cả hai thẻ được rút ra đều mang số chẵn, nên 2 thẻ rút ra thuộc tập {10; 12; 14; 16; 18; 20}.
Do đó n(D) = \(C_6^2 = 15\).
Vậy \(P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac = \frac{3}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |