Dựa vào đồ thị của hàm số bậc hai tương ứng, hãy xác định tập nghiệm của các bất phương trinh bậc hai sau đây:
a) x2 + 2,5x – 1,5 ≤ 0;
b) – x2 – 8x – 16 < 0
c) – 2x2 + 11x – 12 > 0
d) 12x2 + 12 x + 1 ≤ 0
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
b)
Dựa vào hình vẽ ta thấy:
Đồ thị hàm số f(x) cắt trục hoành tại một điểm có hoành độ x = -4 hay f(x) = 0 khi x = -4.
Với x ≠ -4 thì đồ thị hàm số f(x) nằm phía dưới trục hoành nên f(x) < 0 với x ≠ -4.
Vậy bất phương trình – x2 – 8x – 16 < 0 có tập nghiệm là S = ℝ\{-4}.
c)
Dựa vào hình vẽ ta thấy:
Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt x1 = \(\frac{3}{2}\) và x2 = 4 hay f(x) = 0 khi x1 = \(\frac{3}{2}\) và x2 = 4.
Đồ thi hàm số f(x) nằm phía dưới trục hoành với x thuộc hai khoảng \(\left( { - \infty ;\frac{3}{2}} \right)\) và (4; +∞) hay f(x) < 0 với x thuộc \(\left( { - \infty ;\frac{3}{2}} \right)\) ∪ (4; +∞).
Đồ thị hàm số f(x) nằm phía trên trục hoành với x thuộc khoảng \(\left( {\frac{3}{2};4} \right)\) hay f(x) > 0 với x thuộc khoảng \(\left( {\frac{3}{2};4} \right)\).
Vậy bất phương trình – 2x2 + 11x – 12 > 0 có tập nghiệm S = \(\left( {\frac{3}{2};4} \right)\).
d)
Dựa vào hình vẽ ta thấy:
Đồ thi hàm số f(x) nằm phía trên trục hoành với mọi x hay f(x) > 0 với x ∈ ℝ.
Vậy bất phương trình \(\frac{1}{2}\)x2 + \(\frac{1}{2}\)x + 1 ≤ 0 có tập nghiệm S = \(\emptyset \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |