Trong tập hợp các số phức cho phương trình \({z^3} + \left( {1 - 2m} \right){z^2} + 2mz + 4m = 0\) với tham số \(m \in \mathbb{R}.\) Gọi \(S\) là tập hợp các giá trị của \(m\) để phương trình có 3 nghiệm phân biệt và 3 điểm biểu diễn 3 nghiệm đó tạo thành tam giác đều. Tổng tất cả các phần tử của tập \(S\) bằng
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có \[{z^3} + \left( {1 - 2m} \right){z^2} + 2mz + 4m = 0 \Leftrightarrow \left( {z + 1} \right)\left( {{z^2} - 2mz + 4m} \right) = 0\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{z = - 1}\\{{z^2} - 2mz + 4m = 0}\end{array}} \right.\)
Yêu cầu bài toán \( \Leftrightarrow (1)\) có hai nghiệm phức phân biệt (phần ảo khác 0\(){z_1},{z_2}\) thoả mãn:
\(\left| {{z_1} + 1} \right| = \left| {{z_1} - {z_2}} \right| \Leftrightarrow {\left| {{z_1} + 1} \right|^2} = {\left| {{z_1} - {z_2}} \right|^2}{m^2} - 4m < 0\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left( {{z_1} + 1} \right)\left( {\overline + 1} \right) = 4{z_1}{z_2} - {{\left( {{z_1} + {z_2}} \right)}^2}}\\{0 < m < 4}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left( {{z_1} + 1} \right)\left( {{z_2} + 1} \right) = 4{z_1}{z_2} - {{\left( {{z_1} + {z_2}} \right)}^2}}\\{0 < m < 4}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{z_1} + {z_2} + 1 = 3{z_1}{z_2} - {{\left( {{z_1} + {z_2}} \right)}^2}}\\{0 < m < 4}\end{array}} \right.\)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{2m + 1 = 12m - 4{m^2}}\\{0 < m < 4}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{4{m^2} - 10m + 1 = 0}\\{0 < m < 4}\end{array}} \right. \Leftrightarrow m = \frac{4}.\)Vậy tổng tất cả các phần tử của tập \(S\) bằng \(\frac{5}{2}.\)
Đáp án: \(\frac{5}{2}.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |