Cho 3 số dương x, y, x thỏa mãn x + y + z = 3.
Tìm giá trị nhỏ nhất của \(P = \frac{1} + \frac{1}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Chứng minh bổ đề: \(\frac{1}{a} + \frac{1}{b} \ge \frac{4}\) với a, b là các số dương.
Với a, b là các số dương ta có:
\(\frac{1}{a} + \frac{1}{b} \ge \frac{4}\)
\( \Leftrightarrow \frac - \frac{4} \ge 0\)
\( \Leftrightarrow \frac{{{{\left( {a + b} \right)}^2} - 4ab}}{{ab\left( {a + b} \right)}} \ge 0\)
Û a2 + 2ab + b2 – 4ab ≥ 0 (do ab(a + b) > 0 với mọi a, b > 0).
Û a2 – 2ab + b2 ≥ 0
Û (a – b)2 ≥ 0 (luôn đúng với mọi a, b > 0)
Vậy bổ đề được chứng minh.
Áp dụng bổ đề trên ta có:
\(P = \frac{1} + \frac{1} \ge \frac{4} = \frac{4}{{z\left( {y + x} \right)}} = \frac{4}{{z\left( {3 - z} \right)}} = \frac{4}}\)
(Do x + y + z = 3 suy ra y + x = 3 – z)
Ta có: 3z – z2 = \(3z - {z^2} = - \left( {{z^2} - 3z} \right) = - {\left( {z - \frac{3}{2}} \right)^2} + \frac{9}{4} \le \frac{9}{4}\) với mọi z > 0
Do đó \(P \ge \frac{4}} \ge \frac{4}{{\frac{9}{4}}} = \frac{9}\)
Hay \(P \ge \frac{9}\)
Dấu “=” xảy ra khi và chỉ khi \(z - \frac{3}{2} = 0 \Leftrightarrow z = \frac{3}{2}\)
Vậy giá trị nhỏ nhất của P bằng \(\frac{9}\) tại \(x + y = z = \frac{3}{2}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |