Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng: ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Cho tam giác ABC có các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC và I là trung điểm của AH. Chứng minh rằng:

ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.
1 Xem trả lời
Hỏi chi tiết
69
0
0
Bạch Tuyết
11/09/2024 12:12:59

Xét ∆IAF có IA = IF (do A, F thuộc đường tròn tâm I đường kính AH) nên ∆IAF cân tại I, suy ra

Xét ∆BCF vuông tại F có FM là trung tuyến ứng với cạnh huyền BC nên

Xét ∆BMF có MB = MF nên ∆BMF cân tại M, suy ra

Kéo dài AH cắt BC tại D, khi đó AD là đường cao của tam giác ABC.

Xét ∆ABD vuông tại D, ta có:

(tổng hai góc nhọn trong tam giác vuông bằng 90°)

Do đó

Lại có

Suy ra

Hay MF ⊥ IF, mà IF là bán kính đường tròn ngoại tiếp tứ giác AEHF.

Do đó MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Tương tự, ta cũng chứng minh được ME tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Vậy ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×