Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O; R) và điểm A cách O một khoảng 2R. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thẳng vuông góc với OB tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M. a) Chứng minh: AMON là hình thoi. b) Chứng minh: MN là tiếp tuyến của đường tròn. c) Tính diện tích AMON.

Cho đường tròn (O; R) và điểm A cách O một khoảng 2R. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thẳng vuông góc với OB tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.

a) Chứng minh: AMON là hình thoi.

b) Chứng minh: MN là tiếp tuyến của đường tròn.

c) Tính diện tích AMON.

1 trả lời
Hỏi chi tiết
12
0
0
Bạch Tuyết
11/09 12:20:56

Lời giải

a) ) Xét (O; R) có AB là 2 tiếp tuyến tại điểm B

Suy ra AB ⊥ OB

Mà ON ⊥ OB

Nên AB // ON

Xét (O;R) có AB , AC là 2 tiếp tuyến cắt nhau tại A

Suy ra AB = AC và AO là tia phân giác của góc BAC

Xét (O; R) có AC là 2 tiếp tuyến tại điểm C

Suy ra AC ⊥ OC

Mà OM ⊥ OC

Nên AC // OM

Xét tứ giác AMON có AM // ON và AN // OM (chứng minh trên)

Suy ra AMON là hình bình hành

Mà AO là tia phân giác của góc MAN

Suy ra AMON là hình thoi

b) Gọi I là trung điểm của OA

Suy ra \[IA = IO = \frac{1}{2}OA = \frac{2} = R\].

Do đó OI là bán kính của (O)

Mà AMON là hình thoi

Nên OA vuông góc MN tại điểm I

Hay OI vuông góc MN tại điểm I

Xét (O; R) có OI là bán kính của (O), OI vuông góc MN tại điểm I

Suy ra MN là tiếp tuyến của đường tròn (O­)

c) Vì AMON là hình thoi, AO cắt MN tại I

Nên I là trung điểm của MNsuy ra MN = 2 IN

Xét tam giác OAB vuông ở B có sin\(\widehat {OAB} = \frac = \frac{R}{{2{\rm{R}}}} = \frac{1}{2}\)

Suy ra \(\widehat {OAB}\) = 30°

Vì AB // ON nên \(\widehat {OAB} = \widehat {ION}\) (hai góc so le trong)

Mà \(\widehat {OAB}\) = 30°

Suy ra \(\widehat {ION} = 30^\circ \)

Xét tam giác OIN vuông ở I có \(\tan \widehat {ION} = \frac\)

Hay \(\tan 30^\circ = \frac{R}\)

Suy ra \(IN = \frac{R}{{\sqrt 3 }}\)

Mà MN = 2IN (chứng minh trên)

Do đó \(MN = \frac{{\sqrt 3 }}\)

Diện tích hình thoi AMON bằng: \(\frac{1}{2}OA.MN = \frac{1}{2}.2R.\frac{{\sqrt 3 }} = \frac{{2{R^2}}}{{\sqrt 3 }}\).

Vậy diện tích hình thôi AMON là \(\frac{{2{R^2}}}{{\sqrt 3 }}\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư