Cho đường tròn (O; R), đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng d ở M và cắt đường thẳng (d’) ở P. Từ O vẽ một tia vuông góc với MP cắt đường thẳng (d’) ở N.
a) Chứng minh OM = OP và tam giác NMP cân
b) Kẻ OI vuông góc MN. Chứng minh MN là tiếp tuyến của đường tròn (O) tại I
c) Chứng minh AM . BN = R2
d) Tìm vị trí của M để diện tích tứ giác AMNB nhỏ nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Vì (d) và (d’) là tiếp tuyến của (O) tại A, B
Nên OA ⊥ d, OB ⊥ d’
Suy ra \(\widehat {OAM} = 90^\circ \), \(\widehat {OBP} = 90^\circ \)
Ta có đường tròn (O; R), đường kính AB
Nên OA = OB = R
Xét tam giác OAM và tam giác OBP có
\(\widehat {OAM} = \widehat {OBP}\left( { = 90^\circ } \right)\)
OA = OB
\(\widehat {MOA} = \widehat {POB}\) (hai góc đối đỉnh)
Do đó △OAM = △OBP (g.c.g)
Suy ra OM = OP (hai cạnh tương ứng)
Xét tam giác MNP có NO vừa là đường cao vừa là đường trung tuyến
Suy ra tam giác MNP cân tại N
b) Xét tam giác MNP cân tại N có NO là đường cao
Suy ra NO là tia phân giác của góc MNP
Suy ra \(\widehat {ONI} = \widehat {ONB}\)
Xét tam giác ONI và tam giác ONB có
\(\widehat {OIN} = \widehat {OBN}\left( { = 90^\circ } \right)\)
ON là cạnh chung
\(\widehat {ONI} = \widehat {ONB}\)(chứng minh trên)
Do đó △ONI = △ONB (cạnh huyền – góc nhọn)
Suy ra OI = OB (hai cạnh tương ứng)
Mà OB = R nên OI = R
Xét (O; R) có OI = R, OI ⊥ MN
Suy ra MN là tiếp tuyến của (O) tại I
c) Xét (O) có MA , MI là hai tiếp tuyến cắt nhau tại M
Suy ra MA = MI
Xét (O) có NB , NI là hai tiếp tuyến cắt nhau tại N
Suy ra NB = NI
Vì tam giác OMN vuông tại O có OI ⊥ MN
Nên IM . IN = OI2 = R2
Mà MA = MI, NB = NI (chứng minh trên)
Suy ra AM . BN = R2
d) Tứ giác ABNM có \(\widehat {MAB} = \widehat {ABN} = 90^\circ \)
Nên ABNM là hình thang vuông
Suy ra \({S_{ABNM}} = \frac{{(AM + BN).AB}}{2} = \frac{{\left( {AI + IN} \right).2{\rm{R}}}}{2} = MN.R\)
Kẻ MH vuông góc d’
Ta có tam giác MHN vuông tại H
Suy ra MN ≥ MH
Để diện tích tứ giác ABNM nhỏ nhất
⟺ MN nhỏ nhất
Mà MN ≥ MH (chứng minh trên)
Dấu “ = ” xảy ra khi M ≡ H
Vậy điểm M nằm trên đường thẳng song song AB cách AB một khoảng bằng R thì diện tích tứ giác ABNM nhỏ nhất.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |