Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).
a) Chứng minh rằng OA vuông góc với BC.
b) Vẽ đường kính CD. Chứng minh rằng BD // AO.
c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2 cm; OA = 4 cm.
d) Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M.
Chứng minh: AM.AD = AH.AO.
e) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại E. Chứng minh ED là tiếp tuyến của đường tròn (O).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Ta có: AB = AC (Tính chất của hai tiếp tuyến cắt nhau);
OB = OC = R.
Þ OA là đường trung trực của BC Þ OA ^ BC (1)
b) ∆BCD nội tiếp đường tròn (O) có CD là đường kính.
Þ ∆BCD vuông tại B Þ BD ^ BC (2)
Từ (1) và (2) suy ra OA // BD.
c) • Xét ∆OBA vuông tại O. Áp dụng định lí Py-ta-go, ta có:
\(AB = \sqrt {O{A^2} - O{B^2}} = \sqrt {{4^2} - {2^2}} = 2\sqrt 3 \)
\( \Rightarrow AC = AB = 2\sqrt 3 \).
• Xét ∆ABO vuông tại B có BH là đường cao.
Theo hệ thức lượng trong tam giác vuông, ta có:
BH . AO = AB . BO \( \Rightarrow BH = \frac = \frac{{2\sqrt 3 \,.\,2}}{4} = \sqrt 3 \)
\( \Rightarrow BC = 2BH = 2\sqrt 3 \),
d) ∆MCD nội tiếp đường tròn (O) có CD là đường kính.
Þ ∆MCD vuông tại M Þ CM ^ MD
• Xét ∆ACO vuông tại C có CH là đường cao
Theo hệ thức lượng trong tam giác vuông ta có:
AH . AO = AC2 (3)
• Xét ∆ACD vuông tại C có CM là đường cao
Theo hệ thức lượng trong tam giác vuông, ta có:
AM . AD = AC2 (4)
Từ (3) và (4) suy ra AM . AD = AH . AO.
e) Ta có: OE ^ AD, BD ^ BC
\( \Rightarrow \widehat {EBD} = \widehat {EKD} = \widehat {AKO} = 90^\circ \)
Þ Tứ giác BKDE nội tiếp.
Mà \(\widehat {AKO} = \widehat {ABO} = \widehat {ACO} = 90^\circ \)
Þ A, B, K, O, C cùng thuộc đường tròn đường kính AO
\[ \Rightarrow \widehat {EDB} = \widehat {EKB} = \widehat {BCO} = \widehat {BCD}\]
Þ ED là tiếp tuyến của (O).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |