b) Giả sử AM là tia phân giác của góc BAC. Chứng minh rằng tam giác ABC cân tại A.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
b)
GT | ∆ABC, M ∈ BC, MB = MC, MAB^=MAC^. |
KL | ∆ABC cân tại A |
Kéo dài AM một đoạn MD sao cho MD = MA.
Hai tam giác MAB và MDC có:
MB = MC (theo giả thiết).
AMB^=DMB^ (hai góc đối đỉnh).
MA = MD (theo cách dựng).
Do đó ∆MAB = ∆MDC (c – g – c). Do đó AB = DC (1).
Mặt khác ∆ACD có CAD^=CAM^=BAM^=CDM^=CDA^
Vậy tam giác ∆ACD cân tại C và do đó AC = CD (2).
Từ (1) và (2) suy ra AB = AC, hay tam giác ABC cân tại A.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |