Cho tam giác ABC cân tại A. Gọi H, D lần lượt là trung điểm của các cạnh BC và AB.
a) Chứng minh rằng tứ giác ADHC là hình thang.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
• Do DABC cân tại A nên ABC^=ACB^ và AB = AC.
Vì AB = AC nên A nằm trên đường trung trực của BC.
Vì H là trung điểm của BC nên H nằm trên đường trung trực của BC.
Do đó AH là đường trung trực của BC nên AH ⊥ BC.
• Xét DAHB vuông tại H có HD là đường trung tuyến ứng với cạnh huyền AB nên bằng nửa cạnh huyền AB.
Do đó HD=DB=DA=12AB.
• Tam giác DBH có DB = DH nên là tam giác cân tại D
Suy ra DBH^=DHB^ hay ABC^=DHB^.
Lại có ABC^=ACB^ (chứng minh trên) nên DHB^=ACB^
Mà hai góc này ở vị trí đồng vị nên DH // AC.
• Xét tứ giác ADHC có DH // AC nên là hình thang.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |