Cho nửa đường tròn tâm O đường kính AB =2R và điểm M nằm trên đường tròn đó (M ≠ A, B) tiếp tuyến tại điểm M của nửa đường tròn tâm O cắt các tiếp tuyến tại A và B. Lần lượt tại các điểm C, D. Gọi E là giao điểm của OC với AM, gọi F là giao điểm của OD và BM.
a) Chứng minh CD = AC + BD.
b) Chứng minh EF vuông góc BD và EF là tiếp tuyến đường tròn đi qua các điểm M, D, F.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì CA, CM là tiếp tuyến của (O) nên AC = CM
Tương tự: DM = DB
Suy ra: CM + DM = AC + BD ⇒ CD = AC + BD
b) Vì CA, CM là tiếp tuyến của (O) nên OC ⊥ AM tại E là trung điểm AM
Tương tự: OF ⊥ BM tại F là trung điểm BM
Suy ra: EF là đường trung bình của ∆MAB
⇒ EF // AB mà AB ⊥ BD nên EF ⊥ BD
Vì MB ⊥ OD tại F nên G là trung điểm DM, là tâm đường tròn ngoại tiếp ∆MDF
Mà GF là đường trung bình ∆MBD
Suy ra: GF // BD ⇒ GF ⊥ EF
Vậy EF là tiếp tuyến của đường tròn đi qua M, D, F.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |