Cho hàm số y = x4 − 2mx2 + 3m − 2 (với m là tham số). Có bao nhiêu giá trị của tham số m để các điểm cực trị của đồ thị hàm số đều nằm trên các trục tọa độ?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: y′ = 4x3 − 4mx = 0 Û 4x(x2 − m) = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m\end{array} \right.\).
Để đồ thị hàm số có 3 điểm cực trị thì y′ = 0 có ba nghiệm phân biệt Û m > 0.
Khi đó đồ thị hàm số có các điểm cực trị là:
\(A\left( {0;\;3m - 2} \right),\;B\left( {\sqrt m ;\; - {m^2} + 3m - 2} \right),\;C\left( { - \sqrt m ;\; - {m^2} + 3m - 2} \right)\).
Dễ thấy A Î Oy nên bài toán thỏa khi B, C Î Ox
\( \Rightarrow - {m^2} + 3m - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 2\\m = 1\end{array} \right.\) (thỏa mãn).
Vậy có 2 giá trị của m thỏa mãn bài toán.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |