Cho cos 2x = \( - \frac{4}{5}\) với \(\frac{\pi }{4} < x < \frac{\pi }{2}\).
Tính sin x, cos x, \(\sin \left( {x + \frac{\pi }{3}} \right)\), \(\cos \left( {2x - \frac{\pi }{4}} \right)\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Vì \(\frac{\pi }{4}\) < x < \(\frac{\pi }{2}\) nên sin x > 0, cos x > 0. Áp dụng công thức hạ bậc, ta có
\({\sin ^2}x = \frac{2} = \frac \right)}}{2} = \frac{9}\) ⇒ sin x = \(\frac{3}{{\sqrt {10} }}\).
\({\cos ^2}x = \frac{2} = \frac \right)}}{2} = \frac{1}\) ⇒ cos x = \(\frac{1}{{\sqrt {10} }}\).
Theo công thức nhân đôi, ta có sin 2x = 2 sin x cos x = \(2.\frac{3}{{\sqrt {10} }}.\frac{1}{{\sqrt {10} }} = \frac{6} = \frac{3}{5}\).
Theo công thức cộng, ta có
\(\sin \left( {x + \frac{\pi }{3}} \right) = \sin x\cos \frac{\pi }{3} + \cos x\sin \frac{\pi }{3} = \frac{3}{{\sqrt {10} }}.\frac{1}{2} + \frac{1}{{\sqrt {10} }}.\frac{{\sqrt 3 }}{2} = \frac{{2\sqrt {10} }}\).
\[\cos \left( {2x - \frac{\pi }{4}} \right) = \cos 2x\cos \frac{\pi }{4} + \sin 2x\sin \frac{\pi }{4} = \left( { - \frac{4}{5}} \right).\frac{{\sqrt 2 }}{2} + \frac{3}{5}.\frac{{\sqrt 2 }}{2} = - \frac{{\sqrt 2 }}\].
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |