Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
a) y = 2 + 3|cosx|;
b) y = \(2\sqrt {\sin x} \) + 1;
c) y = 3 cos2 x + 4 cos2x;
d) y = sin x + cos x.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Vì 0 ≤ |cos x| ≤ 1 nên 0 ≤ 3|cos x| ≤ 3, do đó 2 ≤ 2 + 3|cos x| ≤ 5 với mọi x ∈ ℝ.
Vậy giá trị lớn nhất của hàm số là 5, đạt được khi
|cos x| = 1 ⇔ sin x = 0 ⇔ x = kπ (k ∈ ℤ).
và giá trị nhỏ nhất của hàm số là 2, đạt được khi
cos x = 0 ⇔ x = \(\frac{\pi }{2}\) + kπ (k ∈ ℤ).
b) Điều kiện sin x ≥ 0. Vì 0 ≤ \(\sqrt {\sin x} \) ≤ 1 nên 0 ≤ 2\(\sqrt {\sin x} \) ≤ 2,
do đó 1 ≤ 2\(\sqrt {\sin x} \) + 1 ≤ 3 với mọi x thoả mãn 0 ≤ sin x ≤ 1.
Vậy giá trị lớn nhất của hàm số là 3, đạt được khi sin x = 1 hay \(x = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Giá trị nhỏ nhất của hàm số là 1, đạt được khi sin x = 0 hay x = kπ (k ∈ ℤ).
c) Ta có y = 3 cos2 x + 4 cos2x \( = 3.\frac{2} + 4\cos 2x\)\( = \frac{3}{2} + \frac{2}\cos 2x\).
Vì – 1 ≤ cos2x ≤ 1 nên \( - \frac{2} \le \frac{2}\cos 2x \le \frac{2}\),
do đó \( - 4 = \frac{3}{2} - \frac{2} \le \frac{3}{2} + \frac{2}\cos 2x \le \frac{3}{2} + \frac{2} = 7\) với mọi x ∈ ℝ.
Vậy giá trị lớn nhất của hàm số là 7, đạt được khi
cos 2x = 1 ⇔ 2x = k2π ⇔ x = kπ (k ∈ ℤ).
và giá trị nhỏ nhất của hàm số là – 4, đạt được khi
cos 2x = – 1 ⇔ 2x = π + k2π ⇔ x = \(\frac{\pi }{2}\) + kπ (k ∈ ℤ).
d) Ta có y = sin x + cos x = \(\sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\).
Vì \( - 1 \le \sin \left( {x + \frac{\pi }{4}} \right) \le 1\) nên \( - \sqrt 2 \le \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) \le \sqrt 2 \), với mọi x ∈ ℝ.
Vậy giá trị lớn nhất của hàm số là \(\sqrt 2 \), đạt được khi \(\sin \left( {x + \frac{\pi }{4}} \right) = 1\)
\[ \Leftrightarrow x + \frac{\pi }{4} = \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\] hay \[x = \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].
Giá trị nhỏ nhất của hàm số là \( - \sqrt 2 \), đạt được khi \(\sin \left( {x + \frac{\pi }{4}} \right) = - 1\)
\[ \Leftrightarrow x + \frac{\pi }{4} = - \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\] hay \[x = - \frac{{3\pi }}{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |