Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án: \(\frac{{16\sqrt 2 }}{3}\)
Phương pháp giải:
- Gọi E, F lần lượt là trung điểm của BD, AC. Sử dụng định lí Pytago tính BF, EF.
- Tính diện tích tam giác BDF.
- Chứng minh \({V_{ABCD}} = \frac{1}{3}.{S_{BDF}}.AC\).
- Áp dụng BĐT: \(ab \le \frac{{{a^2} + {b^2}}}{2}\).
Giải chi tiết:
Gọi E, F lần lượt là trung điểm của BD, AC. Giả sử \(AC = a,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} BD = b\), theo giả thiết ta có: \({a^2} + {b^2} = 16{\mkern 1mu} {\mkern 1mu} \left( {a,b > 0} \right)\).
Xét \(\Delta ABC\) và \(\Delta ADC\) có:
AC chung
AB = AD (gt)
BC = CD (gt)
\( \Rightarrow \Delta ABC = \Delta ADC{\mkern 1mu} {\mkern 1mu} \left( {c.c.c} \right) \Rightarrow BF = DF\) (2 trung tuyến tương ứng)
\( \Rightarrow \Delta BDF\) cân tại F \( \Rightarrow EF \bot BD\) (đường trung tuyến đồng thời là đường cao).
Ta có: BF=AB2-AF2 =62-(a2)2 =36-a24
EF=BF2-BE2 =36-a24-b24 =36-164 =32
\( \Rightarrow {S_{BDF}} = \frac{1}{2}.EF.BD = \frac{1}{2}.\sqrt {32} .b = 2\sqrt 2 b\)
Do \(\left\{ {\begin{array}{*{20}{l}}{AC \bot BF}\\{AC \bot DF}\end{array}} \right. \Rightarrow AC \bot \left( {BDF} \right)\).
Ta có: \({V_{ABCD}} = {V_{A.BDF}} + {V_{C.BDF}}\)
\( = \frac{1}{3}.AF.{S_{BDF}} + \frac{1}{3}.CF.{S_{BDF}}\)
\( = \frac{1}{3}.{S_{BDF}}.\left( {AF + CF} \right)\)
\( = \frac{1}{3}.{S_{BDF}}.AC\)
\( = \frac{1}{3}.a.2\sqrt 2 b = \frac{{2\sqrt 2 }}{3}ab\)
Áp dụng BĐT Cô-si ta có \(ab \le \frac{{{a^2} + {b^2}}}{2} = \frac{2} = 8\).
\( \Rightarrow {V_{ABCD}} \le \frac{{2\sqrt 2 }}{3}.8 = \frac{{16\sqrt 2 }}{3}\).
Vậy \({V_{\max }} = \frac{{16\sqrt 2 }}{3}\) khi và chỉ khi \(\left\{ {\begin{array}{*{20}{l}}{a = b}\\{{a^2} + {b^2} = 16}\end{array}} \right. \Leftrightarrow a = b = 2\sqrt 2 \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |