Số học sinh giỏi Quốc gia năm 2018 – 2019 của 10 trường Trung học phổ thông được cho như sau:
0 0 4 0 0 0 10 0 6 0.
a) Tìm số trung bình, mốt, các tứ phân vị của mẫu số liệu trên.
b) Giải thích tại sao tứ phân vị thứ nhất và trung vị trùng nhau.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
∙ Số trung bình:
Trung bình số lượng học sinh giỏi Quốc gia của 10 trường Trung học phổ thông là:
0 . 7+4+6+1010=2.
∙ Mốt:
Trong dãy số liệu đã cho, số 0 là số xuất hiện với tần số lớn nhất (7 lần).
Do đó mốt của mẫu số liệu là 0.
∙ Trung vị:
Sắp xếp dãy số liệu trên theo thứ tự không giảm là:
0; 0; 0; 0; 0; 0; 0; 4; 6; 10.
Vì n = 10 là số chẵn nên Q2 là trung bình cộng của hai giá trị chính giữa:
Q2 = (0 + 0) : 2 = 0.
∙ Tứ phân vị:
Ta tìm Q1 là trung vị của nửa số liệu bên trái Q2:
0; 0; 0; 0 ;0.
Do đó Q1 = 0.
Ta tìm Q3 là trung vị của nửa số liệu bên phải Q2:
0; 0; 4; 6; 10.
Do đó Q3 = 4.
Vậy số trung bình là 2; mốt là 0, tứ phân vị là Q1 = 0; Q2 = 0; Q3 = 4.
b) Tứ phân vị thứ nhất và trung vị trùng nhau vì mật độ của mẫu số liệu tập trung hết ở nửa trái của trung vị, mẫu số liệu bên trái có số liệu bằng 0 hết.Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |