Cho nửa đường trong (O) đường kính BC và điểm A nằm trong nửa đường tròn (A ≠ B, C). Kẻ AH ⊥ BC (H ∈ BC). Trên nửa mặt phẳng bờ BC chứa A vẽ 2 nửa đường tròn, đường kính HB và HC. Chúng cắt AB và AC ở E và F.
a. Chứng minh: AE.AB = AF.AC.
b. Chứng minh: EF là tiếp tuyến của đường tròn đường kính BH.
c. Gọi I và K là 2 điểm của H qua AB và AC. Chứng minh I, A, K thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a. Ta có: \(\widehat {BEH} = 90^\circ \)(góc nội tiếp chắn nửa (BH)) ⇒ HE ⊥ AB
∆AHB vông tại H, đường cao HE:
AE.AB = \(A{H^2}(1)\)
\(\widehat {HFC} = 90^\circ \)(góc nội tiếp chắn nửa (HC)) ⇒ HF ⊥ AC
∆AHC vuông tại H, đường cao HF: AF.AC = \(A{H^2}\)(2)
Từ (1) và (2) ⇒ AE.AB = AF.AC
b. Ta có: \(\widehat {BAC} = 90^\circ \)(góc nội tiếp chắn nửa (BC)) \( \Rightarrow \widehat {EAF} = 90^\circ \)
Mà \(\widehat {AEH} = 90^\circ \left( {HE \bot AB} \right)\) và \[\widehat {AFH} = 90^\circ \left( {HF \bot AC} \right)\]
⇒ Tứ giác AEHF là hình chữ nhật ⇒ Tứ giác AEHF nội tiếp
\(\widehat {HEF} = \widehat {HAF}\)(Cùng chắn cung HF của (AEHF))
\(\widehat {HAF} = \widehat {ABC} \Rightarrow \) EF là tiếp tuyến (BH)
c. Ta sẽ chứng minh \(\widehat {AIH} = \widehat {KAC}\)
Ta có: \(\widehat {KAC} = \widehat {HAC}\) (tính chất đối xứng)
\(\widehat {HAC} = \widehat {AHE}\) (so le trong) \( \Rightarrow \widehat {KAC} = \widehat {AHE}\)
\(\widehat {AIH} = \widehat {AHE}\) (tính chất đối xứng)
Vậy \(\widehat {AIH} = \widehat {KAC}\) (Cùng = \(\widehat {AHE}\))
Mà AC // IH (tứ giác AEHF là hình chữ nhật)
\( \Rightarrow \widehat {AIH}\) và \(\widehat {KAC}\) đồng vị ⇒ I, A, K thẳng hàng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |