Bài tập  /  Bài đang cần trả lời

Cho hình chữ nhật ABCD, M là điểm bất kì nằm trong hình chữ nhật. Chứng minh rằng: MA2 + MC2 = MB2 + MD2.

Cho hình chữ nhật ABCD, M là điểm bất kì nằm trong hình chữ nhật. Chứng minh rằng: MA2 + MC2 = MB2 + MD2.

1 Xem trả lời
Hỏi chi tiết
32
0
0
Tôi yêu Việt Nam
11/09 16:38:22

Gọi K là giao điểm của hai đường chéo AC và BD suy ra K là trung điểm của AC và BD.

Trong \(\Delta MAC\) có:

\(M{A^2} + M{C^2} = 2M{K^2} + \frac{1}{2}A{C^2}\) (1) (công thức trung tuyến).

Trong \(\Delta MBD\): \(M{B^2} + M{D^2} = 2M{K^2} + \frac{1}{2}B{D^2}\) (2) (công thức trung tuyến)

Mặt khác AC = BD (3) (đường chéo hình chữ nhật)

Từ (1) và (2), (3) suy ra MA2 + MC2 = MB2 + MD2 (đpcm).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×