Bài tập  /  Bài đang cần trả lời

Giả sử một người ăn kiêng cần được cung cấp ít nhất 300 calo, 36 đơn vị vitamin A và 90 đơn vị vitamin C mỗi ngày từ hai loại đồ uống I và II. Mỗi cốc đồ uống I cung cấp 60 calo, 12 đơn vị vitamin A và 10 đơn vị vitamin C. Mỗi cốc đồ uống II cung cấp 60 calo, 6 đơn vị vitamin A và 30 đơn vị vitamin C. Biết rằng một cốc đồ uống I có giá 12 nghìn đồng và một cốc đồ uống II có giá 15 nghìn đồng. Gọi x và y tương ứng là số cốc đồ uống I và II. Viết các bất phương trình biểu thị các điều kiện của bài ...

Giả sử một người ăn kiêng cần được cung cấp ít nhất 300 calo, 36 đơn vị vitamin A và 90 đơn vị vitamin C mỗi ngày từ hai loại đồ uống I và II. Mỗi cốc đồ uống I cung cấp 60 calo, 12 đơn vị vitamin A và 10 đơn vị vitamin C.

Mỗi cốc đồ uống II cung cấp 60 calo, 6 đơn vị vitamin A và 30 đơn vị vitamin C. Biết rằng một cốc đồ uống I có giá 12 nghìn đồng và một cốc đồ uống II có giá 15 nghìn đồng.

Gọi x và y tương ứng là số cốc đồ uống I và II. Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình và xác định miền nghiệm của hệ đó.

1 Xem trả lời
Hỏi chi tiết
15
0
0
Trần Bảo Ngọc
11/09 20:11:12

Lời giải:

Do có x cốc đồ uống I và y cốc đồ uống II nên x ≥ 0; y ≥ 0.

x cốc đồ uống I cung cấp 60x calo, 12x đơn vị vitamin A và 10x đơn vị vitamin C.

y cốc đồ uống II cung cấp 60y calo, 6y đơn vị vitamin A và 30y đơn vị vitamin C.

Do người đó cần cung cấp ít nhất 300 calo, 36 đơn vị vitamin A và 90 đơn vị vitamin C nên 60x + 60y ≥ 300; 12x + 6y ≥ 36; 10x + 30y ≥ 90.

Khi đó ta có hệ bất phương trình sau: \[\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\60{\rm{x}} + 60y \ge 300\\12{\rm{x}} + 6y \ge 36\\10{\rm{x}} + 30y \ge 90\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \ge 5\\2{\rm{x}} + y \ge 6\\x + 3y \ge 9\end{array} \right.\]

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.

Chọn điểm I(3; 3) ∉ d1 và thay vào biểu thức x ta được 3 > 0.

Suy ra miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng bờ d1 chứa điểm I(3; 3).

• Đường thẳng d2: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(3; 3) ∉ d2 và thay vào biểu thức y ta được 3 > 0.

Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d2 chứa điểm I(3; 3).

• Vẽ đường thẳng d3: x + y = 5 bằng cách vẽ đường thẳng đi qua hai điểm (0; 5) và (5; 0).

Chọn điểm I(3; 3) Ï d3 và thay vào biểu thức x + y ta được 6 > 5.

Suy ra miền nghiệm của bất phương trình x + y ≥ 5 là nửa mặt phẳng bờ d3 chứa điểm I(3; 3).

• Vẽ đường thẳng d4: 2x + y = 6 bằng cách vẽ đường thẳng đi qua hai điểm (0; 6) và (1; 4).

Chọn điểm I(3; 3) ∉ d4 và thay vào biểu thức x + y ta được 2 . 3 + 3 = 9 > 6.

Suy ra miền nghiệm của bất phương trình 2x + y ≥ 5 là nửa mặt phẳng bờ d4 chứa điểm I(3; 3).

• Vẽ đường thẳng d5: x + 3y = 9 bằng cách vẽ đường thẳng đi qua hai điểm (0; 3) và (3; 2).

Chọn điểm I(3; 3) ∉ d5 và thay vào biểu thức x + 3y ta được 2 + 3 . 3 = 11 > 5.

Suy ra miền nghiệm của bất phương trình x + 3y ≥ 9 là nửa mặt phẳng bờ d5 chứa điểm I(3; 3).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Ta thấy miền nghiệm của hệ bất phương trình trên là miền tứ giác với các đỉnh (0; 6), (1; 4), (3; 2), (9; 0).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×