Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C. Chứng minh rằng CB là tiếp tuyến của đường tròn.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi H là giao điểm của OC và AB
Vì OA = OB nên ΔAOB cân tại O
Mà OH là đường cao nên cũng là đường phân giác
Do đó \(\widehat {AOC} = \widehat {BOC}\)
Vì AC là tiếp tuyến tại A của đường tròn (O) nên \(\widehat {OAC} = 90^\circ \)
Xét ΔAOC và ΔBOC có
OA = OB
\(\widehat {AOC} = \widehat {BOC}\) (chứng minh trên)
OC là cạnh chung
Do đó ΔAOC = ΔBOC (c.g.c)
Suy ra \(\widehat {OAC} = \widehat {OBC}\) (hai góc tương ứng)
Mà \(\widehat {OAC} = 90^\circ \) nên \(\widehat {OBC} = 90^\circ \)
Suy ra CB vuông góc với OB, mà OB là bán kính của đường tròn (O)
Do đó CB là tiếp tuyến của đường tròn (O) tại B
Vậy CB là tiếp tuyến của đường tròn (O) tại B.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |