Cho tam giác OAB vuông cân, với OA = OB = a. Hãy xác định độ dài của các vectơ sau \(\overrightarrow {OA} + \overrightarrow {OB} ,\) \(\overrightarrow {OA} - \overrightarrow {OB} ,\) \(\overrightarrow {OA} + 2\overrightarrow {OB} ,\) \(2\overrightarrow {OA} - 3\overrightarrow {OB} .\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Gọi C là điểm thoả mãn OACB là hình bình hành
Mà ∆OAB vuông cân có OA = OB nên OACB là hình vuông
OC = AB
Mà AB2 = OA2 + OB2 (định lí Pythagoras)
AB2 = a2 + a2 = 2a2
\( \Rightarrow OC = AB = a\sqrt 2 \)
+) Có: \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OC} \) (quy tắc hình bình hành)
\[ \Rightarrow \left| {\overrightarrow {OA} + \overrightarrow {OB} } \right| = \left| {\overrightarrow {OC} } \right| = OC = a\sqrt 2 \]
+) Có: \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {OA} + \overrightarrow {BO} = \overrightarrow {BO} + \overrightarrow {OA} = \overrightarrow {BA} \)
\( \Rightarrow \left| {\overrightarrow {OA} - \overrightarrow {OB} } \right| = \left| {\overrightarrow {BA} } \right| = a\sqrt 2 \)
+) Lấy điểm D sao cho \(\overrightarrow {OD} = 2\overrightarrow {OB} \) nên hai vectơ \(\overrightarrow {OD} \), \(\overrightarrow {OB} \) cùng hướng và OD = 2OB.
Có: \(\overrightarrow {OA} + 2\overrightarrow {OB} = \overrightarrow {OA} + \overrightarrow {OD} \)
Vẽ hình chữ nhật OAED, khi đó \(\overrightarrow {OA} + \overrightarrow {OD} = \overrightarrow {OE} \)
\[ \Rightarrow \left| {\overrightarrow {OA} + 2\overrightarrow {OB} } \right| = \left| {\overrightarrow {OE} } \right| = OE\]
Mà OE2 = OD2 + DE2 (định lí Pythagoras)
OE2 = (2OB)2 + OA2
OE2 = (2a)2 + a2 = 5a2
\[ \Rightarrow OE = a\sqrt 5 \]
Do đó \[\left| {\overrightarrow {OA} + 2\overrightarrow {OB} } \right| = a\sqrt 5 \]
+) Lấy điểm G sao cho \(\overrightarrow {OG} = 2\overrightarrow {OA} ,\overrightarrow {OH} = 3\overrightarrow {OB} \)
Khi đó: hai vectơ \(\overrightarrow {OG} \), \(\overrightarrow {OA} \) cùng hướng và OG = 2OA;
Và hai vectơ \(\overrightarrow {OH} \), \(\overrightarrow {OB} \) cùng hướng và OH = 3OB.
Có: \(2\overrightarrow {OA} - 3\overrightarrow {OB} = \overrightarrow {OG} - \overrightarrow {OH} \)
\( = \overrightarrow {OG} + \overrightarrow {HO} \) \( = \overrightarrow {HO} + \overrightarrow {OG} \)
\( = \overrightarrow {HG} \)
\( \Rightarrow \left| {2\overrightarrow {OA} - 3\overrightarrow {OB} } \right| = \left| {\overrightarrow {HG} } \right| = HG\)
Mà HG2 = OG2 + OH2 (định lí Pythagoras)
HG2 = (2OA)2 + (3OB)2
HG2 = (2a)2 + (3a)2
HG2 = 13a2
\( \Rightarrow HG = a\sqrt {13} \)
Do đó \(\left| {2\overrightarrow {OA} - 3\overrightarrow {OB} } \right| = a\sqrt {13} .\)
Vậy \[\left| {\overrightarrow {OA} + \overrightarrow {OB} } \right| = a\sqrt 2 ;\]\(\left| {\overrightarrow {OA} - \overrightarrow {OB} } \right| = a\sqrt 2 ;\)\[\left| {\overrightarrow {OA} + 2\overrightarrow {OB} } \right| = a\sqrt 5 \] và \(\left| {2\overrightarrow {OA} - 3\overrightarrow {OB} } \right| = a\sqrt {13} .\)
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |