Cho tam giác ABC đều với trọng tâm O. M là một điểm tuỳ ý nằm trong tam giác. Gọi D, E, F theo thứ tự là hình chiếu vuông góc của M trên BC, CA, AB.
Chứng minh rằng \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} .\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Qua M,
kẻ các đường thẳng IJ // BC, HK // AC, PQ // AB.
Tam giác ABC đều nên \(\widehat {ABC} = \widehat {ACB} = 60^\circ \)
Mà PQ // AB nên \(\widehat {MQK} = \widehat {ABC} = 60^\circ ,\)
HK // AC nên \(\widehat {MKQ} = \widehat {ACB} = 60^\circ \)
Tam giác MQK có: \(\widehat {MQK} = \widehat {MKQ} = 60^\circ \) nên là tam giác đều.
Lại có MD là đường cao kẻ từ M nên MD đồng thời là đường trung tuyến
Do đó D là trung điểm của QK
\( \Rightarrow \overrightarrow {MQ} + \overrightarrow {MK} = 2\overrightarrow {MD} \)(1)
Chứng minh tương tự ta cũng có:
+) \(\overrightarrow {MH} + \overrightarrow {MI} = 2\overrightarrow {MF} \)(2)
+) \(\overrightarrow {MP} + \overrightarrow {MJ} = 2\overrightarrow {ME} \)(3)
Từ (1), (2) và (3) ta có:
\(\overrightarrow {MQ} + \overrightarrow {MK} + \overrightarrow {MH} + \overrightarrow {MI} + \overrightarrow {MP} + \overrightarrow {MJ} = 2\overrightarrow {MD} + 2\overrightarrow {MF} + 2\overrightarrow {ME} \)
\[ \Rightarrow 2\left( {\overrightarrow {MD} + \overrightarrow {MF} + \overrightarrow {ME} } \right) = \left( {\overrightarrow {MQ} + \overrightarrow {MI} } \right) + \left( {\overrightarrow {MK} + \overrightarrow {MJ} } \right) + \left( {\overrightarrow {MH} + \overrightarrow {MP} } \right)\]
Vì MI // BQ, MQ // BI nên tứ giác MIBQ là hình bình hành
\( \Rightarrow \overrightarrow {MI} + \overrightarrow {MQ} = \overrightarrow {MB} \)
Tương tự ta có \[\overrightarrow {MK} + \overrightarrow {MJ} = \overrightarrow {MC} ;\overrightarrow {MH} + \overrightarrow {MP} = \overrightarrow {MA} \]
Khi đó \[2\left( {\overrightarrow {MD} + \overrightarrow {MF} + \overrightarrow {ME} } \right) = \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MA} \]
\[ \Rightarrow \overrightarrow {MD} + \overrightarrow {MF} + \overrightarrow {ME} = \frac{1}{2}\left( {\overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MA} } \right)\]
Lại có O là trọng tâm của tam giác ABC nên \[\overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MA} = 3\overrightarrow {MO} \]
\[ \Rightarrow \overrightarrow {MD} + \overrightarrow {MF} + \overrightarrow {ME} = \frac{1}{2}.3\overrightarrow {MO} = \frac{3}{2}\overrightarrow {MO} .\]
Vậy \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} .\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |