Cho hình chữ nhật ABCD có AB = 1, \(BC = \sqrt 2 .\) Gọi M là trung điểm của AD.
Gọi H là giao điểm của AC, BM. Gọi N là trung điểm của AH và P là trung điểm của CD. Chứng minh rằng tam giác NBP là một tam giác vuông.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
• Xét tam giác ABC vuông tại C, theo định lí Pythagore ta có:
AC2 = AB2 + BC2 = 1 + \({\left( {\sqrt 2 } \right)^2}\)= 3
\( \Rightarrow AC = \sqrt 3 \)
Theo hệ thức lượng trong tam giác vuông ta có:
AB2 = AH.AC \( \Rightarrow AH = \frac{{A{B^2}}} = \frac{{{1^2}}}{{\sqrt 3 }} = \frac{{\sqrt 3 }}{3}\)
\[ \Rightarrow \frac = \frac{{\sqrt 3 }}{3}:\sqrt 3 = \frac{1}{3}\]
\( \Rightarrow \overrightarrow {AH} = \frac{1}{3}\overrightarrow {AC} \)
Khi đó \(\overrightarrow {HC} = \frac{2}{3}\overrightarrow {AC} \) và \(\overrightarrow {HA} = - \frac{1}{3}\overrightarrow {AC} \)
Ta có \(\overrightarrow {NB} = \overrightarrow {NA} + \overrightarrow {AB} \) (quy tắc ba điiểm)
Vì N là trung điểm của AH nên \(\overrightarrow {NA} = \frac{1}{2}\overrightarrow {HA} \)
\( \Rightarrow \overrightarrow {NB} = \frac{1}{2}.\left( { - \frac{1}{3}\overrightarrow {AC} } \right) + \overrightarrow {AB} \)
\( = - \frac{1}{6}.\left( {\overrightarrow a + \overrightarrow b } \right) + \overrightarrow a \)
\( = \frac{5}{6}\overrightarrow a - \frac{1}{6}\overrightarrow b \)
• Có N là trung điểm của HA và P là trung điểm của CD, theo kết quả bài 4.12, trang 58, Sách giáo khoa Toán 10, tập một, ta có:
\(\overrightarrow {AD} + \overrightarrow {HC} = 2\overrightarrow {NP} \)\( \Rightarrow \overrightarrow {NP} = \frac{1}{2}\left( {\overrightarrow {AD} + \overrightarrow {HC} } \right)\)
\( \Rightarrow \overrightarrow {NP} = \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}\overrightarrow {HC} \)
\( = \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}.\frac{2}{3}\overrightarrow {AC} \)
\( = \frac{1}{2}\overrightarrow b + \frac{1}{3}.\left( {\overrightarrow a + \overrightarrow b } \right)\)
\( = \frac{1}{3}\overrightarrow a + \frac{5}{6}.\overrightarrow b \)
Khi đó \[\overrightarrow {NB} .\overrightarrow {NP} = \left( {\frac{5}{6}\overrightarrow a - \frac{1}{6}\overrightarrow b } \right).\left( {\frac{1}{3}\overrightarrow a + \frac{5}{6}.\overrightarrow b } \right)\]
\[ = \frac{5}{\overrightarrow a ^2} + \frac\overrightarrow a .\overrightarrow b - \frac{1}\overrightarrow a .\overrightarrow b - \frac{5}{\overrightarrow b ^2}\]
\[ = \frac{5}{\overrightarrow a ^2} + \frac\overrightarrow a .\overrightarrow b - \frac{1}\overrightarrow a .\overrightarrow b - \frac{5}{\overrightarrow b ^2}\]
\[ = \frac{5}{\left| {\overrightarrow a } \right|^2} + \frac\overrightarrow 0 - \frac{1}\overrightarrow 0 - \frac{5}{\left| {\overrightarrow b } \right|^2}\] (do \(\overrightarrow a .\overrightarrow b = \overrightarrow 0 \))
\[ = \frac{5}{.1^2} - \frac{5}.{\left( {\sqrt 2 } \right)^2}\]
\[ = \frac{5} - \frac{5}.2 = 0\]
Do đó \[\overrightarrow {NB} .\overrightarrow {NP} = 0 \Rightarrow \overrightarrow {NB} \bot \overrightarrow {NP} \]
NB ⊥ NP.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |