Cho tam giác ABC có \(\widehat A = 90^\circ \). Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF với BE.
a) Chứng minh AF = BE . cosC.
b) Biết BC =10 cm, sinC = 0,6. Tính diện tích tứ giác ABFE.
c) AF và BE cắt nhau tại O. Tính sin góc AOB.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét tam giác CEF vuông ở F có \(\cos C = \frac\)
Xét tam giác CEF và tam giác CBA có
\(\widehat C\) là góc chung;
\(\widehat {BAC} = \widehat {{\rm{EF}}C} = 90^\circ \)
Suy ra (g.g)
Do đó \(\frac = \frac\)
Xét tam giác AFC và tam giác BEC có
\(\widehat C\) là góc chung;
\(\frac = \frac\) (chứng minh trên)
Suy ra (g.g)
Do đó \(\frac = \frac\)
Mà cosC = \(\frac\)
Suy ra AF = BE . cosC.
b) Vì tam giác ABC vuông tại A
Suy ra AB = BC . sinC = 10 . 0,6 = 6.
Xét tam giác ABC vuông tại A, theo định lí Pytago có
BC2 = AB2 + AC2
Suy ra \(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{10}^2} - {6^2}} = 8\)
Mà E là trung điểm AC nên AE = EC = 4
Vì tam giác FEC vuông tại F
Suy ra FE = EC . sinC = 4 . 0,6 = 2,4
Xét tam giác FEC vuông tại F, theo định lí Pytago có
EC2 = FE2 + FC2
Suy ra \(FC = \sqrt {E{C^2} - F{{\rm{E}}^2}} = \sqrt {{4^2} - 2,{4^2}} = 3,2\)
Khi đó BF = BC – FC = 10 – 3,2 = 6,8
Ta có SABFE = SABE + SBFE
\( = \frac{1}{2}AB.AE + \frac{1}{2}BF.FE\)
\( = \frac{1}{2}.6.4 + \frac{1}{2}.6,8.2,4 = 20,16\left( {c{m^2}} \right)\)
c) Ta có \(\frac = \frac = \frac{{3,2}}{4}\)
Suy ra AF = 0,8BE
Vì tam giác ABE vuông tại A nên
BE2 = AB2 + AE2
Hay BE2 = 62 + 42
suy ra \(BE = \sqrt {52} \)
Ta có \[{S_{ABFE}} = \frac{1}{2}AF.BE.\sin \widehat {AOB}\]
\( \Leftrightarrow 20,16 = \frac{1}{2}.0,8.\sqrt {52} .\sqrt {52} .\sin \widehat {AOB}\)
\( \Leftrightarrow \sin \widehat {AOB} = \frac{{20,16}}{{20,8}} = \frac\) .
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |