Cho (O) đường kính AB = 10cm, C là 1 điểm trên đường tròn (O) sao cho AC = 6cm. Vẽ CH vuông góc với AB (H thuộc AB).
a) Tính AH và góc ABC.
b) Tiếp tuyến tại B và C của (O) cắt nhau tại D. Chứng minh rằng OD vuông góc với BC.
c) Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh CE.CB = AH.AB.
d) Gọi I là trung điểm của CH tia BI cắt AE tại F. Chứng minh FC là tiếp tuyến của (O).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét DABC có C thuộc đường tròn đường kính AB nên ACB^=90°
Do đó DABC vuông tại C.
b) Do DB, DC là tiếp tuyến với đường tròn suy ra DB = DC nên D thuộc đường trung trực của BC.
Ta có OB = OC nên O thuộc đường trung trực của BC.
Do đó OD là đường trung trực của BC.
Þ OD ⊥ BC.
c) Áp dụng hệ thức lượng cho tam giác vuông EAB ta có: AC2 = CE.CB
Áp dụng hệ thức lượng cho tam giác vuông ABC ta có: AC2 = AH.AB
Suy ra CE.CB = AH.AB.
d) Ta có: CH ⊥ AB, EA ⊥ AB nên CH // AB.
Xét DABF có IH // FA, theo hệ quả định lí Thalès ta có:BIBF=IHFA.
Xét DEBF có CI // EF, theo hệ quả định lí Thalès ta có: BIBF=CIEF.
⇒IHFA=CIEF, mà IH = CI (do I là trung điểm của CH)
Þ FA = EF, hay F là trung điểm của AE
Xét DACE vuông tại C có đường trung tuyến CF nên FA = FC = FE.
Xét DOAF và DOCF có:
FA = FC (cmt); FO là cạnh chung; OA = OC (cùng bằng bán kính)
Do đó DOAF = DOCF (c.c.c)
⇒OAF^=OCF^=90°
Þ FC ⊥ OC, mà C thuộc đường tròn (O)
Do đó FC là tiếp tuyến của (O).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |