Bài tập  /  Bài đang cần trả lời

Trao đổi, thảo luận và tìm hiểu ý tưởng thực hiện các tính toán sau bằng kĩ thuật đệ quy. 1. Tính tổng S(n)=1+2+3+...+n 2. Tính lũy thừa an=a×a×...×a  (n  lan) 3. Tính n giai thừa n!=1×2×3×...×n

Trao đổi, thảo luận và tìm hiểu ý tưởng thực hiện các tính toán sau bằng kĩ thuật đệ quy.

1. Tính tổng S(n)=1+2+3+...+n

2. Tính lũy thừa an=a×a×...×a  (n  lan)

3. Tính n giai thừa n!=1×2×3×...×n

1 Xem trả lời
Hỏi chi tiết
11
0
0
CenaZero♡
12/09/2024 10:27:33

1. Tính tổng S(n)=1+2+3+...+n

Bước 1. Bài toán yêu cầu tính tổng của n số nguyên từ 1 đến n. Cần thiết lập hàm S(n) trả về giá trị tổng cần tim.Bước 2. Điều kiện n ≥ 0.Với n = 0 ta có S(n) = 0. Đây là phần cơ sở cho điều kiệndừng của lời gọi đệ quy của hàm S(n).Bước 3. Dễ thấy S(n) = n + S(n - 1) là công thức truy hồi của hàm S(n) và là cơ sở của lời gọi đệ quy của hàm.Chương trình như sau:

2. Tính lũy thừa an=a×a×...×a  (n  lan) 

Bước 1. Bài toán yêu cầu tính luỹ thừa an. Cần thiết lập hàm exp(a,n) trả về giá trị an.Bước 2. Điều kiện là n ≥ 0 và theo quy ước thì exp(a,0) = 1 với mọi a. Đây chính là phần cơ sở cho điều kiện dừng của lời gọi đệ quy của hàm exp(a,n).Bước 3. Ta có an=a · an−1 suy ra exp(a,n) = a × exp(a,n-1), đây là công thức truy hồi tính exp(a,n). Từ đó có thể thiết lập lời gọi đệ quy của hàm này.

3. Tính n giai thừa n!=1×2×3×...×n

Bước 1. Bài toán yêu cầu tính n giai thừa n!. Ta cần thiết lập hàm giaithua(n) trả về giá trị n!.Bước 2. Điều kiện là n ≥ 0 và quy ước 0! = 1, tức là giaithua (0) = 1. Đây là cơ sở cho điều kiện dừng của lời gọi đệ quy của hàm giaithua(n).Bước 3. Ta có công thức giaithua(n) = n × giaithua(n-1), đây là công thức truy hồi tính giaithua(n). Từ đó dễ dàng thiết lập lời gọi đệ quy cho hàm này.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×