Cho đường tròn tâm O có bán kính OA = R, dây BC vuông góc với OA tại trung điểm M của OA.
a) Tứ giác OCAB là hình gì? Vì sao?
b) Kẻ tiếp tuyến với đường tròn tại B, nó cắt đường thẳng OA tại E. Tính độ dài BE theo R.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a) Bán kính OA vuông góc với BC nên MB = MC
Lại có MO = MA (giả thiết)
Suy ra tứ giác OBAC là hình bình hành vì có các đường chéo cắt nhau tại trung điểm mỗi đường
Mà OA ⊥ BC nên OBAC là hình thoi
Vậy OCAB là hình thoi.
b) Vì OCAB là hình thoi nên OB = BA
Mà OA = OB, suy ra OA = OB = BA
Do đó ΔAOB đều, suy ra \(\widehat {AOB} = 60^\circ \)
Trong tam giác OBE vuông tại B ta có:
\(BE = OB.\tan \widehat {AOB} = R.\tan 60^\circ = R\sqrt 3 \)
Vậy \(BE = R\sqrt 3 \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |