LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N. Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N. Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
1 trả lời
Hỏi chi tiết
11
0
0
Phạm Minh Trí
12/09 11:43:38

Lời giải

Gọi I là trung điểm của CD ta có I là tâm đường tròn ngoại tiếp tam giác COD đường kính CD

Xét (O) có CM, CA là hai tiếp tuyến cắt nhau tại C

Suy ra \(\widehat {AOC} = \widehat {MOC} = \frac{1}{2}\widehat {AOM}\)

Xét (O) có DM, DB là hai tiếp tuyến cắt nhau tại D

Suy ra \(\widehat {BOD} = \widehat {MOD} = \frac{1}{2}\widehat {BOM}\)

Ta có \(\widehat {AOM} + \widehat {BOM} = 180^\circ \) (hai góc kề bù)

\( \Leftrightarrow \frac{1}{2}\widehat {AOM} + \frac{1}{2}\widehat {BOM} = 90^\circ \)

\( \Leftrightarrow \widehat {COM} + \widehat {DOM} = 90^\circ \)

\( \Leftrightarrow \widehat {COD} = 90^\circ \)

Hay tam giác COD vuông tại O

Nên IO là bán kính của (I)

Ta có AB ⊥ CA, AB ⊥ BD

Suy ra AC // BD (quan hệ từ vuông góc đến song song)

Do đó ACDB là hình thang

Mà I là trung điểm của CD; O là trung điểm của AB

Suy ra IO là đường trung bình của hình thang ACDB

Do đó IO // AC

Mà AB ⊥ CA

Nên AB ⊥ OI (quan hệ từ vuông góc đến song song)

Xét (I) có OI là bán kính, AB ⊥ OI (chứng minh trên)

Suy ra AB là tiếp tuyến tại O của đường tròn đường kính CD

Vậy AB là tiếp tuyến của đường tròn đường kính CD.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư