b) Chứng minh rằng ABCD.MNPQ là hình hộp.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
b) Vì M, N lần lượt là trung điểm của các cạnh AA', BB' nên MN // AB và MN = AB. Tương tự PQ // CD và PQ = CD.
Vì AB // CD và AB = CD (do ABCD là hình bình hành).
Khi đó, MN // PQ và MN = PQ, suy ra MNPQ là hình hành.
Lại có các đường thẳng AM, BN, CP, DQ đôi một song song (do AA', BB', CC', DD' đôi một song song). Hơn nữa, theo giả thiết ta có hai mặt phẳng (ABCD) và (MNPQ) song song với nhau.
Vậy ABCD.MNPQ là hình hộp.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |