Cho hình chữ nhật ABCD với bốn đỉnh A(–4; 3), B(4; 3), C(4; –3), D(–4; –3).
a) Viết phương trình chính tắc của elip nhận ABCD là hình chữ nhật cơ sở. Vẽ elip đó.
b) Viết phương trình chính tắc của hypebol nhận ABCD là hình chữ nhật cơ sở. Vẽ hypebol đó.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi M, N lần lượt là trung điểm của AB, BC.
Toạ độ của M là xM;yM=xA+xB2;yA+yB2=−4+42;3+32=0;3.
Toạ độ của N là xN;yN=xB+xC2;yB+yC2=4+42;3+−32=4;0.
a) Gọi phương trình chính tắc của elip cần tìm là x2a2+y2b2=1 (a > b > 0).
Vì ABCD là hình chữ nhật cơ sở của elip nên M, N là hai đỉnh của elip.
Lại có: M(0; 3) ⇒ b = 3, N(4; 0) ⇒ a = 4.
Vậy phương trình chính tắc của elip cần tìm là x216+y29=1.
+) Vẽ elip:
Ta thấy a = 4, b = 3. Toạ độ các đỉnh của elip là (–4; 0), (5; 0), (0; – 3), (0; 3).
Bước 1. Vẽ hình chữ nhật cơ sở có bốn cạnh thuộc bốn đường thẳng x = –4, x = 4, y = –3, y = 3.
Bước 2. Tìm một số điểm cụ thể thuộc elip, chẳng hạn ta thấy điểm X125;125 và điểm Y165;95 thuộc (E). Do đó các điểm X1125;−125, X2−125;125, X3−125;−125, Y1165;−95, Y2−165;95,Y3−165;−95 cũng thuộc (E).
Bước 3. Vẽ đường elip (E) đi qua các điểm cụ thể trên, nằm ở phía trong hình chữ nhật cơ sở và tiếp xúc với các cạnh của hình chữ nhật cơ sở tại bốn đỉnh của (E) là (–4; 0), (4; 0), (0; –3), (0; 3).
Gọi phương trình chính tắc của hypebol cần tìm là x2a2−y2b2=1 (a > 0, b > 0).
Vì M(0; 3) và N(4;0) là trung điểm các cạnh của hình chữ nhật cơ sở nên a = 4, b = 3.
Vậy phương trình chính tắc của hypebol cần tìm là x216−y29=1.
+) Vẽ hypebol:
Ta thấy a = 4, b = 3. (H) có các đỉnh là (–4; 0), (4; 0).
Bước 1. Vẽ hình chữ nhật cơ sở có bốn cạnh thuộc bốn đường thẳng x = –4, x = 4, y = –3, y = 3.
Bước 2. Vẽ hai đường chéo của hình chữ nhật cơ sở.
Tim một số điểm cụ thể thuộc hypebol, chẳng hạn ta thấy điểm X203;4 thuộc (H). Do đó các điểm X1203;−4,X2−203;4,X3−203;−4 thuộc (H).
Bước 3. Vẽ đường hypebol bên ngoài hình chữ nhật cơ sở; nhánh bên trái tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm (–4; 0) và đi qua X2, X3; nhánh bên phải tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm (4; 0) và đi qua X, X1. Vẽ các điểm thuộc hypebol càng xa gốc toạ độ thì càng sát với đường tiệm cận. Hypebol nhận gốc toạ độ là tâm đối xứng và hai trục toạ độ là hai trục đối xứng.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |