Thống kê điểm kiểm tra cuối năm môn Toán của một nhóm 100 học sinh lớp 8 được chọn ngẫu nhiên tại ba lớp của trường Trung học cơ sở X, thu được kết quả như bảng sau:
Điểm | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Số học sinh | 7 | 9 | 11 | 11 | 12 | 12 | 13 | 9 | 8 | 8 |
a) Chọn ngẫu nhiên một học sinh của trường X. Hãy tính xác suất thực nghiệm của các biến cố sau:
A: "Học sinh đó có điểm nhỏ hơn hoặc bằng 5";
B: "Học sinh đó có điểm từ 4 đến 9".
b) Hãy dự đoán trong nhóm 80 học sinh lớp 8 chọn ngẫu nhiên từ ba lớp khác của trường X:
Có bao nhiêu học sinh có số điểm không vượt quá 5 điểm?
Có bao nhiêu học sinh có số điểm từ 4 đến 9 điểm?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
+) Có 7 học sinh có điểm 1; 9 học sinh có điểm 2; 11 học sinh có điểm 3; 11 học sinh có điểm 4; 12 học sinh có điểm 5, do đó có 7 + 9 + 11 + 11 + 12 = 50 học sinh có điểm nhỏ hơn hoặc bằng 5.
Xác suất thực nghiệm của biến cố A là: 50100 = 0,5. Do đó, P(A) ≈ 0,5.
+) Có 11 học sinh có điểm 4; 12 học sinh có điểm 5; 12 học sinh điểm 6; 13 học sinh điểm 7; 9 học sinh điểm 8; 8 học sinh điểm 9 nên có 11 + 12 + 12 + 13 + 9 + 8 = 65 học sinh có điểm từ 4 đến 9.
Xác suất thực nghiệm của biến cố B là: 65100=0,65. Do đó, P(B) ≈ 0,65.
b)
+) Gọi k là số học sinh có số điểm không vượt quá 5 trong nhóm 80 học sinh.
Có PA≈k80. Thay giá trị ước lượng của P(A) ở trên, ta được:
k80≈0,5, suy ra k ≈ 80 . 0,5 = 40.
Vậy có khoảng 40 học sinh có số điểm không vượt quá 5.
+) Gọi h là số học sinh có số điểm từ 4 đến 9 điểm trong nhóm 80 học sinh.
Có PB≈h80. Thay giá trị ước lượng của P(B) ở trên, ta được:
h80≈0,65, suy ra h ≈ 80 . 0,65 = 52.
Vậy có khoảng 52 học sinh có số điểm từ 4 đến 9 điểm.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |