Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) x2 + y2 + z2 + 2x – 4z + 2 = 0.
b) x2 + y2 + z2 – 2x + 2y + 2z + 7 = 0.
c) 3x2 + 3y2 + 3z2 + 12x – 6y + 6z + 2 = 0.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Phương trình có các hệ số a = −1, b = 0, c = 2 và d = 2.
⇒ a2 + b2 + c2 – d = (−1)2 + 02 + 22 – 2 = 3 > 0.
Do đó, phương trình đã cho là phương trình mặt cầu, hơn nữa mặt cầu có tâm là
I(−1; 0; 2) và bán kính R = \(\sqrt 3 \).
b) Phương trình có các hệ số a = 1, b = −1, c = −1 và d = 7.
⇒ a2 + b2 + c2 – d = 12 + (−1)2 + (−1)2 – 7 = −4 < 0.
Do đó, phương trình đã cho không phải là phương trình mặt cầu.
c) Ta có: 3x2 + 3y2 + 3z2 + 12x – 6y + 6z + 2 = 0.
⇔ x2 + y2 + z2 + 4x – 2y + 2z + \(\frac{2}{3}\) = 0.
Phương trình có các hệ số: a = −2, b =1, c = −1 và d = \(\frac{2}{3}\).
⇒ a2 + b2 + c2 – d = (−2)2 + 12 + (−1)2 − \(\frac{2}{3}\) = \(\frac{3}\) > 0.
Do đó, phương trình đã cho là phương trình mặt cầu có tâm I(−2; 1; −1) và R = \(\frac{{4\sqrt 3 }}{3}\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |