Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Ax, lấy P trên Ax (AP > R). Từ P kẻ tiếp tuyến PM với (O). a, Chứng minh bốn điểm A, P, M, O cùng thuộc một đường tròn. b, Chứng minh BM // OP. c, Đường thẳng vuông góc với AB tại O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành. d, Giả sử AN cắt OP tại K; PM cắt ON tại I; PN cắt OM tại J. Chứng minh I, J, K thẳng hàng.

Cho đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Ax, lấy P trên Ax (AP > R). Từ P kẻ tiếp tuyến PM với (O).

a, Chứng minh bốn điểm A, P, M, O cùng thuộc một đường tròn.

b, Chứng minh BM // OP.

c, Đường thẳng vuông góc với AB tại O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành.

d, Giả sử AN cắt OP tại K; PM cắt ON tại I; PN cắt OM tại J. Chứng minh I, J, K thẳng hàng.

1 Xem trả lời
Hỏi chi tiết
44
0
0
Nguyễn Thu Hiền
12/09/2024 17:47:47

a. Ta có \(\widehat {PAO} + \widehat {PMO} = 90^\circ + 90^\circ = 180^\circ \) suy ra tứ giác APMO là tứ giác nội tiếp ⇒ A, P, M, O cùng nằm trên 1 đường tròn.

b. Ta có OP ⊥ AM, BM ⊥ AM ⇒ BM // OP.

c. Chứng minh ∆AOP = ∆OBN ⇒ OP = BN.

Lại có BN // OP, do đó OPNB là hình bình hành.

d. Ta có ON ⊥ PI, PM ⊥ JO mà PM ∩ ON = I ⇒ I là trực tâm ∆POJ ⇒ IJ ⊥ PO (1)

Chứng minh PAON là hình chữ nhật ⇒ K là trung điểm PO

Lại có \(\widehat {APO} = \widehat {OPI} = \widehat {IOP} \Rightarrow \Delta IPO\) cân tại I ⇒ IK ⊥ PO (2)

Từ (1), (2) ⇒ I, J, K thẳng hàng.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×