Cho đường tròn (O; R) đường kính AB. Kẻ tiếp tuyến Ax, lấy P trên Ax (AP > R). Từ P kẻ tiếp tuyến PM với (O).
a, Chứng minh bốn điểm A, P, M, O cùng thuộc một đường tròn.
b, Chứng minh BM // OP.
c, Đường thẳng vuông góc với AB tại O cắt tia BM tại N. Chứng minh tứ giác OBNP là hình bình hành.
d, Giả sử AN cắt OP tại K; PM cắt ON tại I; PN cắt OM tại J. Chứng minh I, J, K thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a. Ta có \(\widehat {PAO} + \widehat {PMO} = 90^\circ + 90^\circ = 180^\circ \) suy ra tứ giác APMO là tứ giác nội tiếp ⇒ A, P, M, O cùng nằm trên 1 đường tròn.
b. Ta có OP ⊥ AM, BM ⊥ AM ⇒ BM // OP.
c. Chứng minh ∆AOP = ∆OBN ⇒ OP = BN.
Lại có BN // OP, do đó OPNB là hình bình hành.
d. Ta có ON ⊥ PI, PM ⊥ JO mà PM ∩ ON = I ⇒ I là trực tâm ∆POJ ⇒ IJ ⊥ PO (1)
Chứng minh PAON là hình chữ nhật ⇒ K là trung điểm PO
Lại có \(\widehat {APO} = \widehat {OPI} = \widehat {IOP} \Rightarrow \Delta IPO\) cân tại I ⇒ IK ⊥ PO (2)
Từ (1), (2) ⇒ I, J, K thẳng hàng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |