Người ta chia đường tròn (O; R) thành 6 cung bằng nhau như sau:
– Trên đường tròn (O; R), lấy điểm A tuỳ ý;
– Vẽ một phần đường tròn (A; R) cắt (O; R) tại B và C;
– Vẽ một phần đường tròn (C; R) cắt (O; R) tại E (khác A);
– Vẽ một phần đường tròn (E; R) cắt (O; R) tại F (khác C);
– Vẽ một phần đường tròn (F; R) cắt (O; R) tại D (khác E).
Nối A với B, B với D, D với F, F với E, E với C, C với A, ta được lục giác ABDFEC.
Chứng minh:
a) Lục giác ABDFEC là lục giác đều;
b) AF, BE, CD là các đường kính của đường tròn (O; R);
c) Các tứ giác ACEF, ABDC, BECA đều là hình thang cân.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
⦁ Từ giả thiết ta có sáu cung AB, AC, CE, EF, FD, DB bằng nhau nên \(\widehat {AOB} = \widehat {AOC} = \widehat {COE} = \widehat {EOF} = \widehat {FOD} = \widehat {DOB}.\)
Xét ∆AOB và ∆BOD có:
OA = OB; \(\widehat {AOB} = \widehat {BOD},\) OB = OD.
Do đó ∆AOB = ∆BOD (c.g.c), suy ra AB = BD (hai cạnh tương ứng).
Mặt khác, ta có AB = AC = CE = EF = FD = R.
Nên AB = AC = CE = EF = FD = DB. (1)
⦁ Ta có \(\widehat {AOB} + \widehat {AOC} + \widehat {COE} + \widehat {EOF} + \widehat {FOD} + \widehat {DOB} = 360^\circ \)
Suy ra \(6\widehat {AOB} = 360^\circ ,\) do đó \(\widehat {AOB} = 60^\circ .\)
Xét ∆AOB có OA = OB và \(\widehat {AOB} = 60^\circ \) nên ∆AOB là tam giác đều.
Do đó \(\widehat {OAB} = 60^\circ .\)
Chứng minh tương tự, ta cũng có ∆OAC đều nên \(\widehat {OAC} = 60^\circ .\)
Khi đó, \(\widehat {BAC} = \widehat {OAB} + \widehat {OAC} = 60^\circ + 60^\circ = 120^\circ .\)
Tương tự, ta chứng minh được:
\(\widehat {BAC} = \widehat {ACE} = \widehat {CEF} = \widehat {EFD} = \widehat {FDB} = \widehat {DBA} = 120^\circ .\,\,\,\left( 2 \right)\)
Từ (1) và (2) ta có ABDFEC là lục giác đều.
b) Do ABDFEC là lục giác đều nên ba đường chéo AF, BE, CD cắt nhau tại O.
Do đó AF, BE, CD là các đường kính của đường tròm (O; R).
c) Chứng minh tương tự ở câu a, ta chứng minh được ∆AOC, ∆OCE là các tam giác đều. Suy ra \(\widehat {AOC} = \widehat {OCE} = 60^\circ .\)
Mà hai góc này ở vị trí so le trong nên AO // CE hay AF // CE.
Tứ giác ACEF có AF // CE nên là hình thang.
Lại có \[\widehat {ACE} = \widehat {FEC} = 120^\circ \] nên ACEF là hình thang cân.
Chứng minh tương tự, ta cũng có các tứ giác ABDC, BECA đều là hình thang cân.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |