Cho nửa đường tròn (O; R) có BC là đường kính. Lấy điểm A trên tia đối của tia CB. Kẻ tiếp tuyến AF, Bx của nửa đường tròn (O) (F là tiếp điểm), tia AF cắt tia Bx tại D. Chứng minh OBDF là tứ giác nội tiếp.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi I là trung điểm của DO.
Ta có BD và AD là tiếp tuyến của đường tròn (O; R) nên \(\widehat {DBO} = 90^\circ \) và \(\widehat {DFO} = 90^\circ .\)
Tam giác DBO vuông tại O nên tam giác này nội tiếp đường tròn tâm I, bán kính bằng \(\frac{1}{2}DO.\)
Tương tự, tam giác DFO vuông tại F nên nội tiếp đường tròn tâm I, bán kính bằng \(\frac{1}{2}DO.\)
Do đó, tứ giác OBDF nội tiếp đường tròn tâm I, bán kính bằng \(\frac{1}{2}DO.\)
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |