Cho đường tròn (O), đường kính AB, C là trung điểm của OA và dây MN vuông góc với OA tại C. Gọi K là điểm tuỳ ý trên cung nhỏ BM, H là giao điểm của AK và MN. Chứng minh BCHK là tứ giác nội tiếp.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có \(\widehat {HCB} = 90^\circ \) (do MN ⊥ OA tại C), \(\widehat {AKB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn (O) đường kính AB) hay \(\widehat {HKB} = 90^\circ .\)
Khi đó, tam giác BCH vuông tại C và tam giác BKH vuông tại K cùng nội tiếp đường tròn đường kính HB.
Do đó, tứ giác BCHK nội tiếp đường tròn đường kính HB.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |