Cho hình vuông ABCD và điểm M bất kì trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với DM tại H. Chứng minh BHCD là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BHCD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có \(\widehat {BCD} = 90^\circ \) (do ABCD là hình vuông), \(\widehat {BHD} = 90^\circ \) (do BH ⊥ DH).
Khi đó, tam giác BHD vuông tại H và tam giác BCD vuông tại C cùng nội tiếp đường tròn đường kính BD.
Do đó, tứ giác BHCD nội tiếp đường tròn đường kính BD.
Gọi I là trung điểm của BD, khi đó I là tâm của đường tròn ngoại tiếp tứ giác BHCDTham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |