d1: x – 2y – 1 = 0 và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1 - 2t}\\{y = 2 - t}\end{array}} \right.\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét d1: x – 2y – 1 = 0 và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1 - 2t}\\{y = 2 - t}\end{array}} \right.\)
Vectơ pháp tuyến của d1 là: \(\overrightarrow = \left( {1; - 2} \right)\)
Vectơ chỉ phương của d2 là: \(\overrightarrow = \left( { - 2; - 1} \right)\). Do đó, d2 có một vectơ pháp tuyến là: \(\overrightarrow = \left( {1; - 2} \right)\)
Ta có: \(\overrightarrow = \overrightarrow \) nên d1 và d2 song song hoặc trùng nhau
Xét d1: x – 2y – 1 = 0 . Khi x = 3 thì y = 1, do đó, điểm (3; 1) thuộc đường thẳng d1.
Xét \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1 - 2t}\\{y = 2 - t}\end{array}} \right.\) có: \(\left\{ {\begin{array}{*{20}{c}}{3 = 1 - 2t}\\{1 = 2 - t}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}t = - 1\\t = 1\end{array} \right.\) (không thể tồn tại), do đó, điểm (3; 1) không thuộc đường thẳng d2
Vậy d1 // d2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |