Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho tam giác ABC. Gọi M; N; P lần lượt là trung điểm BC; AC; AB. Xác định các vector sau đây

Cho tam giác ABC. Gọi M; N; P lần lượt là trung điểm BC; AC; AB. Xác định các vector sau đây a) PB-> + MC -> + NA-> 
b) BA-> + PA-> + CM -> 
0 Xem trả lời
Hỏi chi tiết
72
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải bài toán liên quan đến các vector trong tam giác ABC với các trung điểm M, N, P, ta cần mô tả các điểm và vector một cách rõ ràng.

Giả sử:

- A, B, C là các điểm trong không gian với tọa độ lần lượt là \( \vec{A} \), \( \vec{B} \), \( \vec{C} \).
- M là trung điểm của BC, do đó:
\[
\vec{M} = \frac{\vec{B} + \vec{C}}{2}
\]
- N là trung điểm của AC, do đó:
\[
\vec{N} = \frac{\vec{A} + \vec{C}}{2}
\]
- P là trung điểm của AB, do đó:
\[
\vec{P} = \frac{\vec{A} + \vec{B}}{2}
\]

### a) Tính toán vector \( \vec{PB} + \vec{MC} + \vec{NA} \)

Ta biết rằng:
\[
\vec{PB} = \vec{B} - \vec{P} = \vec{B} - \frac{\vec{A} + \vec{B}}{2} = \frac{\vec{B} - \vec{A}}{2}
\]
\[
\vec{MC} = \vec{C} - \vec{M} = \vec{C} - \frac{\vec{B} + \vec{C}}{2} = \frac{\vec{C} - \vec{B}}{2}
\]
\[
\vec{NA} = \vec{A} - \vec{N} = \vec{A} - \frac{\vec{A} + \vec{C}}{2} = \frac{\vec{A} - \vec{C}}{2}
\]

Cộng các vector này lại, ta có:
\[
\vec{PB} + \vec{MC} + \vec{NA} = \frac{\vec{B} - \vec{A}}{2} + \frac{\vec{C} - \vec{B}}{2} + \frac{\vec{A} - \vec{C}}{2}
\]

Khi thực hiện cộng, ta có:
\[
= \frac{(\vec{B} - \vec{A}) + (\vec{C} - \vec{B}) + (\vec{A} - \vec{C})}{2} = \frac{\vec{B} - \vec{A} + \vec{C} - \vec{B} + \vec{A} - \vec{C}}{2} = \frac{0}{2} = \vec{0}
\]

### b) Tính toán vector \( \vec{BA} + \vec{PA} + \vec{CM} \)

Ta biết rằng:
\[
\vec{BA} = \vec{A} - \vec{B}
\]
\[
\vec{PA} = \vec{A} - \vec{P} = \vec{A} - \frac{\vec{A} + \vec{B}}{2} = \frac{\vec{A} - \vec{B}}{2}
\]
\[
\vec{CM} = \vec{M} - \vec{C} = \frac{\vec{B} + \vec{C}}{2} - \vec{C} = \frac{\vec{B} - \vec{C}}{2}
\]

Cộng các vector này lại, ta có:
\[
\vec{BA} + \vec{PA} + \vec{CM} = (\vec{A} - \vec{B}) + \frac{\vec{A} - \vec{B}}{2} + \frac{\vec{B} - \vec{C}}{2}
\]
\[
= \left(1 + \frac{1}{2}\right)(\vec{A} - \vec{B}) + \frac{\vec{B} - \vec{C}}{2}
\]
\[
= \frac{3}{2}(\vec{A} - \vec{B}) + \frac{\vec{B} - \vec{C}}{2}
\]

Để đưa về dạng tổng quát, ta tính:
\[
= \left(\frac{3}{2}\vec{A} - \frac{3}{2}\vec{B} + \frac{1}{2}\vec{B} - \frac{1}{2}\vec{C}\right) = \frac{3}{2}\vec{A} - \frac{2}{2}\vec{B} - \frac{1}{2}\vec{C}
\]
\[
= \frac{3}{2}\vec{A} - \vec{B} - \frac{1}{2}\vec{C}
\]

Kết luận:
\[
a) \vec{PB} + \vec{MC} + \vec{NA} = \vec{0}
\]
\[
b) \vec{BA} + \vec{PA} + \vec{CM} = \frac{3}{2}\vec{A} - \vec{B} - \frac{1}{2}\vec{C}
\]

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×