Bài tập  /  Bài đang cần trả lời

Cho nửa đường tròn tâm O đường kính AB. Ax là tia tiếp tuyến của nửa đường tròn (Ax và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB), từ điểm C trên nửa đường tròn (C ≠ A, B) vẽ tiếp tuyến CM cắt Ax tại M, hạ CH vuông góc với AB tại H, MB cắt (O) tại Q và cắt CH tại N. a) Chứng minh MA2 = MQ.MB. b) MO cắt AC tại I. Chứng minh tứ giác AIQM nội tiếp. c) Chứng minh: IN ⊥ CH.

Cho nửa đường tròn tâm O đường kính AB. Ax là tia tiếp tuyến của nửa đường tròn (Ax và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB), từ điểm C trên nửa đường tròn (C ≠ A, B) vẽ tiếp tuyến CM cắt Ax tại M, hạ CH vuông góc với AB tại H, MB cắt (O) tại Q và cắt CH tại N.

a) Chứng minh MA2 = MQ.MB.

b) MO cắt AC tại I. Chứng minh tứ giác AIQM nội tiếp.

c) Chứng minh: IN ⊥ CH.

1 trả lời
Hỏi chi tiết
12
0
0

Lời giải:

a) ∆AQB nội tiếp đường tròn (O)

\( \Rightarrow \widehat {AQB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

⇒ AQ ⊥ QB hay AQ ⊥ BM.

∆ABM vuông tại A (do Ax là tiếp tuyến của (O) nên Ax ⊥ AB) có AQ ⊥ BM, ta áp dụng hệ thức lượng trong tam giác vuông suy ra: MA2 = MQ . MB (đpcm).

b) ∆ACB nội tiếp đường tròn (O)

\( \Rightarrow \widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

⇒ AC ⊥ CB. (1)

Ta có: OA = OC (Bán kính của đường tròn tâm O)

Và MA = MC (Hai tiếp tuyến MA, MC cắt nhau tại M)

Suy ra MO là đường trung trực của đoạn thẳng AC.

⇒ MO ⊥ AC. (2)

Từ (1) và (2) suy ra BC // OM (cùng vuông góc với AC).

\( \Rightarrow \widehat {OMB} = \widehat {MBC}\) (so le trong).

Hay \(\widehat {IMQ} = \widehat {MBC}\). (3)

Mặt khác: \(\widehat {QAI} = \widehat {MBC}\) (Hai góc nội tiếp đường tròn (O) cùng chắn cung QC). (4)

Từ (3) và (4), suy ra \(\widehat {IMQ} = \widehat {QAI}\).

Do M và A cùng nhìn QI cố định dưới hai góc bằng nhau nên tứ giác AIQM nội tiếp.

c) Do tứ giác AIQM nội tiếp nên suy ra:

\(\widehat {AMI} = \widehat {AQI}\) (Hai góc nội tiếp đường tròn cùng chắn cung AI) (5)

Ta có: \(\widehat {IQN} = \widehat {AQB} - \widehat {AQI} = 90^\circ - \widehat {AQI}\) (6).

Xét tam giác AIM vuông tại I có \(\widehat {AMI} + \widehat {MAI} = 90^\circ \).

Và \(\widehat {MAI} + \widehat {IAO} = \widehat {MAO} = 90^\circ \).

Suy ra \(\widehat {AMI} = \widehat {IAO}\) (Hai góc cùng phụ với \(\widehat {MAI}\)) (7)

Xét tam giác CAH vuông tại H có:

\(\widehat {CAH} + \widehat {ACH} = 90^\circ \Rightarrow \widehat {ACH} = 90^\circ - \widehat {CAH}\)

Hay \(\widehat {ICN} = 90^\circ - \widehat {IAO}\) (8).

Từ (5), (6), (7) và (8), suy ra \(\widehat {IQN} = \widehat {ICN}\).

Do Q và C cùng nhìn IN cố định dưới hai góc bằng nhau nên tứ giác IQCN nội tiếp.

\( \Rightarrow \widehat {CIN} = \widehat {CQN}\) (Hai góc nội tiếp đường tròn cùng chắn cung CN) (*)

Mà \(\widehat {CAB} = \widehat {CQB}\) (Hai góc nội tiếp đường tròn (O) cùng chắn cung CB) (**)

Từ (*) và (**) suy ra \(\widehat {CIN} = \widehat {CAH}\).

Suy ra IN // AH (Có hai góc ở vị trí đồng vị bằng nhau)

Mà AH ⊥ CH nên suy ra IN ⊥ CH.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500K