Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng 2a. Tính thể tích khối trụ ngoại tiếp hình lập phương ABCD.A′B′C′D′.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Khối trụ ngoại tiếp hình lập phương ABCD.A′B′C′D’ có bán kính đáy là \[R = \frac{1}{2}AC\] và chiều cao h = AA′
Ta có:
\[AC = AB\sqrt 2 = 2a\sqrt 2 \]
Þ Vtrụ = S.h
\[ = \pi {R^2}h = \pi .{\left( {\frac{{2a\sqrt 2 }}{2}} \right)^2}.2a = 4\pi {a^3}\]
Vậy thể tích khối trụ ngoại tiếp hình lập phương ABCD.A′B′C′D′ là \[4\pi {a^3}\].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |