Cho tam giác AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. kẻ IH vuông góc với đường thẳng AB, kẻ IK vuông góc với đường thẳng AC. Chứng minh rằng BH = CK.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi đường trung trực của BC cắt BC tại M.
Xét ΔBMI và ΔCMI, ta có:
\[\widehat {BMI} = \widehat {CMI}\] (bằng 90 độ)
BM = CM (vì M là trung điểm của BC )
MI cạnh chung
Suy ra: ΔBMI = ΔCMI (c.g.c)
Suy ra: IB = IC (hai cạnh tương ứng)
Xét hai tam giác vuông ΔIHA và ΔIKA, ta có:
\[\widehat {HAI} = \widehat {KAI}\](vì AI là tia phân giác của góc BAC).
\(\widehat {IHA} = \widehat {IKA}\)(bằng 90 độ)
AI cạnh huyền chung
Suy ra: ΔIHA = ΔIKA (cạnh huyền – góc nhọn)
Suy ra: IH = IK (hai cạnh tương ứng)
Xét hai tam giác vuông ΔIHB và ΔIKC, ta có:
IB = IC ( chứng minh trên )
\(\widehat {IHB} = \widehat {IKC}\)(bằng 90 độ)
IH = IK (chứng minh trên)
Suy ra: ΔIHB = ΔIKC (cạnh huyền – cạnh góc vuông)
Suy ra: BH = CK (hai cạnh tương ứng).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |