Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Gọi tọa độ điểm I(a; 0).
Khi đó:
\(\overrightarrow {AI} \left( {a - 3; - 1} \right) \Rightarrow IA = \sqrt {{{\left( {a - 3} \right)}^2} + 1} = \sqrt {{a^2} - 6a + 10} \)
\(\overrightarrow {BI} \left( {a + 2; - 4} \right) \Rightarrow IB = \sqrt {{{\left( {a + 2} \right)}^2} + {{\left( { - 4} \right)}^2}} = \sqrt {{a^2} + 4a + 20} \)
Mà IA = IB = R nên \(\sqrt {{a^2} - 6a + 10} = \sqrt {{a^2} + 4a + 20} \)
⇒ a2 – 6a + 10 = a2 + 4a + 20
⇒ – 10a = 10
⇒ a = – 1
Thay vào lại phương trình ta thấy a = -1 thỏa mãn.
Suy ra I(– 1; 0) và \(R = IA = \sqrt {{{\left( { - 1} \right)}^2} - 6\left( { - 1} \right) + 10} = \sqrt {17} \).
Vì vậy phương trình đường tròn (C) là: (x + 1)2 + y2 = 17.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |