LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O) và dây cung AB của (O) không là đường kính. Gọi I là trung điểm của AB. Một đường thẳng thay đổi đi qua A cắt đường tròn tâm O bán kính OI tại P và Q. a) Chứng minh rằng AP . AQ = AI2. b) Giả sử đường tròn ngoại tiếp tam giác BPQ cắt AB tại K khác B. Chứng minhrằng AK . AB = AP . AQ. c) Chứng minh rằng K là trung điểm của AI.

Cho đường tròn (O) và dây cung AB của (O) không là đường kính. Gọi I là trung điểm của AB. Một đường thẳng thay đổi đi qua A cắt đường tròn tâm O bán kính OI tại P và Q.

a) Chứng minh rằng AP . AQ = AI2.

b) Giả sử đường tròn ngoại tiếp tam giác BPQ cắt AB tại K khác B. Chứng minhrằng AK . AB = AP . AQ.

c) Chứng minh rằng K là trung điểm của AI.

1 trả lời
Hỏi chi tiết
35
0
0
Trần Bảo Ngọc
13/09 14:06:11

a) Xét (O; OA) có I là trung điểm của dây cung AB, suy ra OI ⊥ AB

Xét (O; OI) có OI ⊥ AI

Suy ra AI là tiếp tuyến của (O; OI) tại I

Do đó \(\widehat {PIA} = \widehat {PQI}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung PI)

Xét DAIP và DAQI có

\(\widehat {PIA} = \widehat {PQI}\) (chứng minh trên);

\(\widehat {PAI}\) là góc chung

Suy ra  (g.g)

Do đó \(\frac = \frac\), suy ra AP . AQ = AI2

b) Vì BKPQ là tứ giác nội tiếp nên \(\widehat {APK} = \widehat {KBQ}\)

Xét DAPK và DABQ có

\(\widehat {APK} = \widehat {ABQ}\) (chứng minh trên);

\(\widehat {PAK}\) là góc chung

Suy ra  (g.g)

Do đó \(\frac = \frac\), suy ra AP . AQ = AB . AK.

c) Ta có AP . AQ = AB . AK (chứng minh câu b)

AP . AQ = AI2 (chứng minh câu a)

Suy ra AB . AK = AI2

⇔ 2AI . AK = AI2 (vì I là trung điểm của AB)

⇔ 2AK = AI

\( \Rightarrow AK = \frac{1}{2}AI\)

Vậy K là trung điểm của AI.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư