Cho elip có phương trình x225+y216=1. Viết phương trình đường thẳng đi qua điểm M(2; 1) và cắt elip tại hai điểm A, B sao cho MA = MB.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giả sử A(x1; y1), B(x2; y2).
Ta thấy M nằm trong elip, do đó MA = MB khi M là trung điểm của AB.
⇒x1+x2=2xM=2.2=4, y1+y2=2yM=2.1=2.
Vì A, B thuộc elip nên x1225+y1216=1 và x2225+y2216=1.
⇒x1225+y1216−x2225+y2216=1−1=0
⇒x12−x2225+y12−y2216=0⇒x1+x2x1−x225+y1+y2y1−y216=0
⇒4x1−x225+2y1−y216=0⇒x1−x225+y1−y232=0⇒x1−x225=y1−y2−32.
Mà BA→ có toạ độ là (x1 – x2; y1 – y2) nên (25; –32) là một vectơ chỉ phương của AB
⇒ (32; 25) là một vectơ pháp tuyến của AB
⇒Phương trình đường thẳng AB là: 32(x – 2) + 25(y – 1) = 0 hay 32x + 25y – 89 = 0.
Vậy phương trình đường thẳng cần tìm là 32x + 25y – 89 = 0.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |