Bài tập  /  Bài đang cần trả lời

Cho tứ diện ABCD. Gọi G1 và G2 lần lượt là trọng tâm của hai tam giác ABD và ACD. Chứng minh G1G2 song song với các mặt phẳng (ABC) và (BCD).

Cho tứ diện ABCD. Gọi G1 và G2 lần lượt là trọng tâm của hai tam giác ABD và ACD. Chứng minh G1G2 song song với các mặt phẳng (ABC) và (BCD).

1 Xem trả lời
Hỏi chi tiết
20
0
0
Nguyễn Thị Sen
13/09 17:00:40

Gọi M, N lần lượt là trung điểm của DB, DC.

Xét ∆DBC có M, N lần lượt là trung điểm của DB, DC nên MN là đường trung bình của ∆DBC, suy ra MN // BC.

Do G1 là trọng tâm ∆ABD nên AG1AM=23;

      G2 là trọng tâm ∆ACD nên AG2AN=23.

Do đó AG1AM=AG2AN=23.

Trong tam giác AMN, ta có AG1AM=AG2AN=23  nên G1G2 // MN (định lí Thalès đảo)

Mà MN // BC (chứng minh trên)

Suy ra G1G2 // MN // BC, mà BC ⊂ (ABC), MN ⊂ (BCD).

Suy ra G1G2 song song với các mặt phẳng (ABC) và (BCD).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×