Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của hai cạnh AB và CD, P là trung điểm của SA. Chứng minh:
a) MN song song với các mặt phẳng (SBC) và (SAD);
b) SB song song với (MNP);
c) SC song song với (MNP).
d) Gọi G1 và G2 theo thứ tự là trọng tâm của hai tam giác ABC và SBC. Chứng minh G1G2 song song với (SAD).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Hình bình hành ABCD có M, N lần lượt là trung điểm của hai cạnh AB và CD nên MN // AD // BC
Ta có MN // BC và BC ⊂ (SBC), suy ra MN // (SBC);
MN // AD và AD ⊂ (SAD), suy ra MN // (SAD).
Vậy MN song song với các mặt phẳng (SBC) và (SAD).
b) Trong ∆SAB, có P, M lần lượt là trung điểm của SA, AB nên PM là đường trung bình, suy ra PM // SB
Mà PM ⊂ (MNP), suy ra SB // (MNP).
c) Trong mặt phẳng (SAB) vẽ đường thẳng d đi qua S và song song AB.
Gọi E là giao điểm của MP và d.
Ta có d // AB hay ES // AB, mà AB // CD nên ES // DC, tức là ES // NC (1)
Ta cũng có ES // MB và EM // SB nên MBSE là hình bình hành, suy ra ES = MB
Mà MB = NC (do M, N lần lượt là trung điểm của AB, DC và AB = DC)
Suy ra ES = NC (2)
Từ (1) và (2) suy ra ESCN là hình bình hành nên SC // NE.
Lại có NE ⊂ (MNP), suy ra SC // (MNP).
d) Gọi I là trung điểm của BC.
Do G1 và G2 theo thứ tự là trọng tâm của ∆ABC và ∆SBC nên IG1IA=IG2IS=13
Trong ∆SIA, ta có IG1IA=IG2IS=13, suy ra G1G2 // SA (định lí Thalès đảo)
Mà SA ⊂ (SAD), nên G1G2 // (SAD).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |