Trong mặt phẳng tọa độ, cho hypebol có phương trình chính tắc x2a2−y2b2=1.
a) Hãy giải thích vì sao nếu điểm M(x0; y0) thuộc hypebol thì các điểm có toạ độ (x0; –y0), (–x0; y0), (–x0; –y0) cũng thuộc hypebol (H.3.12).
b) Tìm toạ độ các giao điểm của hypebol với trục hoành. Hypebol có cắt trục tung hay không? Vì sao?
c) Với điểm M(x0; y0) thuộc hypebol, hãy so sánh |x0| với a.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Nếu điểm M(x0; y0) thuộc hypebol thì ta có: x02a2−y02b2=1.
Ta có: x02a2−−y02b2=−x02a2−y02b2=−x02a2−−y02b2=x02a2−y02b2=1 nên các điểm có toạ độ (x0; –y0), (–x0; y0), (–x0; –y0) cũng thuộc elip.
b)
+) Gọi A là giao điểm của hypebol với trục hoành.
Vì A thuộc trục Ox nên toạ độ của A có dạng (xA; 0)
Mà A thuộc hypebol nên xA2a2−02b2=1⇒xA2=a2⇒xA=axA=−a.
Do đó hypebol cắt trục Ox tại hai điểm A1(–a; 0) và A2(a; 0).
+) Giả sử hypebol cắt trục tung tại B.
Vì B thuộc trục Oy nên toạ độ của B có dạng (0; yB).
Mà B thuộc hypebol nên 02a2−yB2b2=1⇒−yB2b2=1 (vô lí).
Vậy hypebol không cắt trục tung.
c) M(x0; y0) thuộc hypebol nên ta có: x02a2−y02b2=1.
Vì y02b2≥0 nên x02a2≤1⇒x02≤a2⇒|x0| ≤a.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |