Cho elip (E) có phương trình chính tắc là x2a2+y2b2=1 (a > b > 0). Xét đường tròn (C) tâm O bán kính a có phương trình là x2 + y2 = a2.
Xét điểm M(x; y)∈(E) và điểm M1(x; y1)∈(C) sao cho y và y1 luôn cùng dấu (khi M khác với hai đỉnh A1, A2 của (E)) (Hình 10).
a) Từ phương trình chính tắc của elip (E), hãy tính y2 theo x2.
Từ phương trình của đường tròn (C), hãy tính y12 theo x2.
b) Tính tỉ số HMHM1=yy1 theo a và b.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có: x2a2+y2b2=1⇒y2b2=1−x2a2=a2−x2a2⇒y2=a2−x2b2a2;
x2+y12=a2⇒y12=a2−x2.
b) Từ a) ta suy ra y2y12=a2−x2b2a2a2−x2=b2a2⇒yy1=ba. Vậy HMHM1=yy1=ba.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |